Skip to main content

Assessment of Circalunar (~Monthly) Rhythms

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Neuromethods ((NM,volume 186))

  • 666 Accesses

Abstract

Moonlight is the strongest naturally and predictably occurring nocturnal light source. Thus, many species have adapted to use moonlight as a reliable timing cue, either by directly reacting to moonlight or by entraining inner oscillators, like the monthly circalunar clock.

Natural moonlight is characterized by intensity, spectrum, and complex timing, which regularly changes every night and across additional timescales. In order to understand the molecular and cellular machineries underlying moon-controlled physiology and behavior, lab experiments with organisms exhibiting well-documented lunar cycles are important. Tools such as TALEN- or Cas9/Crispr-engineered mutants or transgenesis are crucial to move from correlative studies to causal relationships. However, lab experiments face the problem that commonly used artificial light sources differ greatly from sun- and moonlight.

To start to overcome this limitation, we have developed naturalistic sun- and moonlight sources, which closely mimic the natural light environment.

We highlight the use of these naturalistic sun- and moonlight sources using the marine bristle worm Platynereis dumerilii, which controls its timing of reproduction with a circalunar clock. Importantly, while designed for Platynereis research, these methods can also be relatively easily adapted and used to study the effects of moonlight and/or monthly oscillator systems of other species. Finally, we provide an overview on statistical analyses of circalunar data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Neumann D (1966) Die lunare und tägliche Schlüpfperiodik der Mücke Clunio. Steuerung und Abstimmung auf die Gezeitenperiodik. Z Vgl Physiol 53:1–61

    Article  Google Scholar 

  2. Franke HD (1986) Resetting a circalunar reproduction rhythm with artificial moonlight signals: Phase-response curve and “moon-off” effect. J Comp Physiol A 159:569–576. https://doi.org/10.1007/BF00604176

    Article  Google Scholar 

  3. Zantke J, Ishikawa-Fujiwara T, Arboleda E et al (2013) Circadian and circalunar clock interactions in a marine annelid. Cell Rep 5:99–113. https://doi.org/10.1016/j.celrep.2013.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hauenschild C (1956) Hormonale Hemmung der Geschlechtsreife und Metamorphose bei dem Polychaeten Platynereis Dumerilii. Zeitschrift fur Naturforsch – Sect B J Chem Sci 11:125–132. https://doi.org/10.1515/znb-1956-0302

    Article  Google Scholar 

  5. Boch CA, Ananthasubramaniam B, Sweeney AM et al (2011) Effects of light dynamics on coral spawning synchrony. Biol Bull 220:161–173. https://doi.org/10.1086/BBLv220n3p161

    Article  PubMed  Google Scholar 

  6. Hauenschild C (1960) Lunar periodicity. Cold Spring Harb Symp Quant Biol 25:491–497. https://doi.org/10.1101/SQB.1960.025.01.051

    Article  CAS  PubMed  Google Scholar 

  7. Zantke J, Oberlerchner H, Tessmar-Raible K (2014) Circadian and circalunar clock interactions and the impact of light in Platynereis dumerilii. In: Annual, lunar, and tidal clocks. Springer Japan, Tokyo, pp 143–162

    Chapter  Google Scholar 

  8. Zantke J, Bannister S, Rajan VBV et al (2014) Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197:19–31. https://doi.org/10.1534/genetics.112.148254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuehn E, Stockinger AW, Girard J et al (2019) A scalable culturing system for the marine annelid Platynereis dumerilii. PLoS One 14:e0226156. https://doi.org/10.1371/journal.pone.0226156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schenk S, Bannister SC, Sedlazeck FJ, et al (2019) Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. Elife:8. https://doi.org/10.7554/eLife.41556

  11. Bannister S, Antonova O, Polo A et al (2014) TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics 197:77–89. https://doi.org/10.1534/genetics.113.161091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Backfisch B, Kozin VV, Kirchmaier S et al (2014) Tools for gene-regulatory analyses in the marine annelid Platynereis dumerilii. PLoS One 9:e93076. https://doi.org/10.1371/journal.pone.0093076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Backfisch B, Veedin Rajan VB, Fischer RM et al (2013) Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci U S A 110:193–198. https://doi.org/10.1073/pnas.1209657109

    Article  CAS  PubMed  Google Scholar 

  14. Veedin-Rajan VB, Fischer RM, Raible F, Tessmar-Raible K (2013) Conditional and specific cell ablation in the marine annelid Platynereis dumerilii. PLoS One 8:e75811. https://doi.org/10.1371/journal.pone.0075811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chartier TF, Deschamps J, Dürichen W et al (2018) Whole-head recording of chemosensory activity in the marine annelid Platynereis dumerilii. Open Biol 8. https://doi.org/10.1098/rsob.180139

  16. Williams EA, Jékely G (2016) Towards a systems-level understanding of development in the marine annelid Platynereis dumerilii. Curr Opin Genet Dev 39:175–181. https://doi.org/10.1016/j.gde.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  17. Hanswillemenke A, Kuzdere T, Vogel P et al (2015) Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein. J Am Chem Soc 137:15875–15881. https://doi.org/10.1021/jacs.5b10216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raible F, Tessmar-Raible K (2014) Platynereis dumerilii. Curr Biol 24:R676–R677

    Article  CAS  Google Scholar 

  19. Fischer A, Dorresteijn A (2004) The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bio Essays 26:314–325. https://doi.org/10.1002/bies.10409

    Article  Google Scholar 

  20. Korringa P (1947) Relations between the moon and periodicity in the breeding of marine animals. Ecol Monogr 17:347–381. https://doi.org/10.2307/1948665

    Article  Google Scholar 

  21. Ranzi S (1931) Ricerche sulla biologia sessuale degli Annelidi. Pubbl del Stn Zool Napoli 11:271–292

    Google Scholar 

  22. Fischer A (1985) Reproduction and postembryonic development of the annelid Platynereis dumerilii. https://avtibeu/media/23194. Accessed 4 Mar 2021

    Google Scholar 

  23. Zurl M, Poehn B, Rieger D et al (2021) Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase. bioRxiv. https://doi.org/10.1101/2021.04.16.440114

  24. Andreatta G, Tessmar-Raible K (2020) The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks. J Mol Biol 432:3525–3546. https://doi.org/10.1016/j.jmb.2020.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Depauw FA, Rogato A, D’Alcalá MR, Falciatore A (2012) Exploring the molecular basis of responses to light in marine diatoms. J Exp Bot 63:1575–1591. https://doi.org/10.1093/jxb/ers005

    Article  CAS  PubMed  Google Scholar 

  26. Veedin Rajan VB, Häfker NS, Arboleda E et al (2021) Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin. Nat Ecol Evol 5:204–218. https://doi.org/10.1038/s41559-020-01356-1

    Article  PubMed  Google Scholar 

  27. Poehn B, Krishnan S, Zurl M et al (2021) A Cryptochrome adopts distinct moon- and sunlight states and functions as moonlight interpreter in monthly oscillator entrainment. bioRxiv. https://doi.org/10.1101/2021.04.16.439809

  28. Kyba CCM, Mohar A, Posch T (2017) How bright is moonlight? Astron Geophys 58:1.31–1.32. https://doi.org/10.1093/astrogeo/atx025

    Article  Google Scholar 

  29. Dekens MPS, Foulkes NS, Tessmar-raible K (2017) Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish. PLoS One 12(2):e0172038. https://doi.org/10.1371/journal.pone.0172038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raible F, Takekata H, Tessmar-Raible K (2017) An overview of monthly rhythms and clocks. Front Neurol 8:1–14. https://doi.org/10.3389/fneur.2017.00189

    Article  Google Scholar 

  31. Helfrich-Förster C, Monecke S, Spiousas I et al (2021) Women temporarily synchronize their menstrual cycles with the luminance and gravimetric cycles of the Moon. Sci Adv 7:eabe1358. https://doi.org/10.1126/sciadv.abe1358

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fox HM (1924) Lunar Periodicity in Reproduction. Proc R Soc London Ser B, Contain Pap a Biol Character 95:523–550

    Google Scholar 

  33. Tessmar-Raible K, Raible F, Arboleda E (2011) Another place, another timer: Marine species and the rhythms of life. BioEssays 33:165–172. https://doi.org/10.1002/bies.201000096

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kaiser TS, Poehn B, Szkiba D et al (2016) The genomic basis of circadian and circalunar timing adaptations in a midge. Nature 540:69–73. https://doi.org/10.1038/nature20151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ikegami T, Takeuchi Y, Hur SP, Takemura A (2014) Impacts of moonlight on fish reproduction. Mar Genomics 14:59–66. https://doi.org/10.1016/j.margen.2013.11.007

    Article  PubMed  Google Scholar 

  36. Shlesinger T, Loya Y (2019) Breakdown in spawning synchrony: a silent threat to coral persistence. Science 1007:1002–1007. https://doi.org/10.1126/science.aax0110

    Article  CAS  Google Scholar 

  37. Norevik G, Åkesson S, Andersson A et al (2019) The lunar cycle drives migration of a nocturnal bird. PLoS Biol 17:e3000456. https://doi.org/10.1371/journal.pbio.3000456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perrins CM, Crick HQP (1996) Influence of lunar cycle on laying dates of European Nightjars (Caprimulgus europaeus). Auk 113:705–708. https://doi.org/10.2307/4089001

    Article  Google Scholar 

  39. Ayalon I, Rosenberg Y, Benichou JIC et al (2021) Coral gametogenesis collapse under artificial light pollution. Curr Biol 31:413–419.e3. https://doi.org/10.1016/j.cub.2020.10.039

    Article  CAS  PubMed  Google Scholar 

  40. R Core Team (2020) R: a language and environment for statistical computing

    Google Scholar 

  41. Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press. https://doi.org/10.1017/CBO9780511564345

  42. Lee A (2010) Circular data. Wiley Interdiscip Rev Comput Stat 2:477–486. https://doi.org/10.1002/wics.98

    Article  Google Scholar 

  43. Cremers J, Klugkist I (2018) One direction? A tutorial for circular data analysis using R with examples in cognitive psychology. Front Psychol 9:2040. https://doi.org/10.3389/fpsyg.2018.02040

    Article  PubMed  PubMed Central  Google Scholar 

  44. Landler L, Ruxton GD, Malkemper EP (2018) Circular data in biology: advice for effectively implementing statistical procedures. Behav Ecol Sociobiol 72:1–10. https://doi.org/10.1007/s00265-018-2538-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Tessmar-Raible .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Sexual metamorphosis of Platynereis dumerilii causes clear behavioral changes (female). The video shows a mature, yellow-colored female swimming in circles. In contrast, the immature/premature worms settle at the bottom and display crawling behavior (MOV 71165 kb)

Sexual metamorphosis of Platynereis dumerilii causes clear behavioral changes (male). The video shows a mature, red−/white-colored male swimming in the culture box. In contrast, the immature/premature worms settle at the bottom and display crawling behavior (MOV 34876 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poehn, B., Tessmar-Raible, K. (2022). Assessment of Circalunar (~Monthly) Rhythms. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics