Skip to main content

A Robust Methodology for Assessing Homoeolog-Specific Expression

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

  • 1176 Accesses

Abstract

Angiosperm evolution is marked by numerous, recurring polyploidization events. While hybridization and polyploidization have greatly increased the degree of genetic and phenotypic diversity in plants, the mechanisms underlying changes in the genotype-to-phenotype relationships remain unclear. As the field of natural sciences continues to expand during the post-genomic era, large datasets are becoming increasingly common. However, the development of tools and workflows available to robustly assess these changes have lagged behind data production. A robust homoeolog-specific expression analysis strongly depends upon proper homoeolog calling, the ability to account for reference sequence biases, flexible and accurate methods for dealing with residual bias, and a reproducible workflow. To that end, this chapter aims to provide a detailed description of the potential pitfalls encountered while estimating homoeolog-specific expression as well as provide a workflow that allows for robust inferences based on precise estimates of expression changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Turro E, Su S-Y, Gonçalves  et al (2011) Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome Biol 12:R13

    Article  CAS  Google Scholar 

  2. Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430:85–88

    Article  CAS  Google Scholar 

  3. Wolf JBW (2013) Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour 13:559–572

    Article  CAS  Google Scholar 

  4. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  5. Pertea M, Kim D, Pertea GM et al (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    Article  CAS  Google Scholar 

  6. Hu G, Wendel JF (2019) Cis-trans controls and regulatory novelty accompanying allopolyploidization. New Phytol 221:1691–1700

    Article  Google Scholar 

  7. Miller BR, Morse AM, Borgert JE et al (2021) Testcrosses are an efficient strategy for identifying cis-regulatory variation: Bayesian analysis of allele-specific expression (BayesASE) G3 11. https://doi.org/10.1093/g3journal/jkab096

  8. Nieto Feliner G, Álvarez I, Fuertes-Aguilar J et al (2017) Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity 118:513–516

    Article  CAS  Google Scholar 

  9. Boatwright JL, McIntyre LM, Morse AM et al (2018) A robust methodology for assessing differential homeolog contributions to the transcriptomes of allopolyploids. Genetics 210:883–894

    Article  CAS  Google Scholar 

  10. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  Google Scholar 

  11. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  Google Scholar 

  12. Manado Manado Press (2016) Corset: enabling differential gene expression analysis for de Novo assembled transcriptomes. CreateSpace Independent Publishing Platform

    Google Scholar 

  13. Soltis DE, Gitzendanner MA, Stull G et al (2013) The potential of genomics in plant systematics. Taxon 62:886–898

    Article  Google Scholar 

  14. Glover NM, Redestig H, Dessimoz C (2016) Homoeologs: What are they and how do we infer them? Trends Plant Sci 21:609–621

    Article  CAS  Google Scholar 

  15. Krasileva KV, Buffalo V, Bailey P et al (2013) Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biol 14:R66

    Article  Google Scholar 

  16. Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24:319–324

    Article  CAS  Google Scholar 

  17. Hernández-Salmerón JE, Moreno-Hagelsieb G (2020) Progress in quickly finding orthologs as reciprocal best hits: comparing blast, last, diamond and MMseqs2. BMC Genomics 21:741

    Article  Google Scholar 

  18. Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314:1041–1052

    Article  CAS  Google Scholar 

  19. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238

    Article  Google Scholar 

  20. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  Google Scholar 

  21. Kiełbasa SM, Wan R, Sato K et al (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21:487–493

    Article  Google Scholar 

  22. Merkel D et al (2014) Docker: lightweight linux containers for consistent development and deployment. Linux J 2014:2

    Google Scholar 

  23. Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS One 12:e0177459

    Article  Google Scholar 

  24. Kuo TCY, Hatakeyama M, Tameshige T et al (2020) Homeolog expression quantification methods for allopolyploids. Brief Bioinform 21:395–407

    Article  CAS  Google Scholar 

  25. Degner JF, Marioni JC, Pai AA et al (2009) Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25:3207–3212

    Article  CAS  Google Scholar 

  26. Stevenson KR, Coolon JD, Wittkopp PJ (2013) Sources of bias in measures of allele-specific expression derived from RNA-seq data aligned to a single reference genome. BMC Genomics 14:536

    Article  Google Scholar 

  27. Skelly DA, Johansson M, Madeoy J et al (2011) A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res 21:1728–1737

    Article  CAS  Google Scholar 

  28. Graze RM, Novelo LL, Amin V et al (2012) Allelic imbalance in Drosophila hybrid heads: exons, isoforms, and evolution. Mol Biol Evol 29:1521–1532

    Article  CAS  Google Scholar 

  29. León-Novelo LG, McIntyre LM, Fear JM, Graze RM (2014) A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics 15:920

    Article  Google Scholar 

  30. Fear JM, León-Novelo LG, Morse AM et al (2016) Buffering of genetic regulatory networks in Drosophila melanogaster. Genetics 203:1177–1190

    Article  CAS  Google Scholar 

  31. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  Google Scholar 

  32. Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048

    Article  CAS  Google Scholar 

  33. Kruschke JK (2010) Bayesian data analysis. WIREs. Cogn Sci 1:658–676

    Google Scholar 

  34. Shan S, Boatwright JL, Liu X et al (2020) Transcriptome dynamics of the inflorescence in reciprocally formed allopolyploid Tragopogon miscellus (Asteraceae). Front Genet 11:888

    Article  CAS  Google Scholar 

  35. Di Tommaso P, Chatzou M, Floden EW et al (2017) Nextflow enables reproducible computational workflows. Nat Biotechnol 35:316–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lucas Boatwright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boatwright, J.L. (2023). A Robust Methodology for Assessing Homoeolog-Specific Expression. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics