Skip to main content

Preparation of Functional Human Hepatocytes Ex Vivo

  • Protocol
  • First Online:
Hepatocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2544))

Abstract

Hepatocytes are liver parenchymal cells involved in performing various metabolic reactions. During the development of therapeutic drugs, toxicological assays are conducted using hepatocyte cultures before clinical trials. However, since primary hepatocytes cannot proliferate and rapidly lose their functions in vitro, many efforts have been put into modifying culture conditions to expand primary hepatocytes and induce hepatocyte functions in intrinsic and extrinsic stem/progenitor cells. In this chapter, we summarize recent advances in preparing hepatocyte cultures and induction of hepatocytes from various cellular sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miyajima A, Tanaka M, Itoh T (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14(5):561–574. https://doi.org/10.1016/j.stem.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  2. Furuyama K, Kawaguchi Y, Akiyama H et al (2011) Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43(1):34–41. https://doi.org/10.1038/NG.722

    Article  CAS  PubMed  Google Scholar 

  3. Español-Suñer R, Carpentier R, Van Hul N et al (2012) Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143(6). https://doi.org/10.1053/J.GASTRO.2012.08.024

  4. Gadd VL, Aleksieva N, Forbes SJ (2020) Epithelial plasticity during liver injury and regeneration. Cell Stem Cell 27(4):557–573. https://doi.org/10.1016/J.STEM.2020.08.016

    Article  CAS  PubMed  Google Scholar 

  5. Tanimizu N, Mitaka T (2017) Which is better source for functional hepatocytes? Stem Cell Investig 4:12. https://doi.org/10.21037/SCI.2017.02.08

    Article  PubMed  PubMed Central  Google Scholar 

  6. Katsuda T, Hosaka K, Matsuzaki J et al (2020) Transcriptomic dissection of hepatocyte heterogeneity: linking ploidy, zonation, and stem/progenitor cell characteristics. CMGH 9(1):161–183. https://doi.org/10.1016/J.JCMGH.2019.08.011

    Article  PubMed  Google Scholar 

  7. Rombaut M, Boeckmans J, Rodrigues RM et al (2021) Direct reprogramming of somatic cells into induced hepatocytes: cracking the Enigma code. J Hepatol 75(3):690–705. https://doi.org/10.1016/J.JHEP.2021.04.048

    Article  CAS  PubMed  Google Scholar 

  8. Luce E, Messina A, Duclos-Vallée J et al (2021) Advanced techniques and awaited clinical applications for human pluripotent stem cell differentiation into hepatocytes. Hepatology 74(2):1101–1116. https://doi.org/10.1002/hep.31705

    Article  PubMed  Google Scholar 

  9. Mitaka T, Mikami M, Sattler GL et al (1992) Small cell colonies appear in the primary culture of adult rat hepatocytes in the presence of nicotinamide and epidermal growth factor. Hepatology 16(2):440–447. https://doi.org/10.1002/hep.1840160224

    Article  CAS  PubMed  Google Scholar 

  10. Gj G, Wb C, Jw G (2000) Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats. Am J Pathol 157(3):771–786. https://doi.org/10.1016/S0002-9440(10)64591-9

    Article  Google Scholar 

  11. Sasaki K, Kon J, Mizuguchi T et al (2008) Proliferation of hepatocyte progenitor cells isolated from adult human livers in serum-free medium. Cell Transplant 17(10–11):1221–1230. https://doi.org/10.3727/096368908787236666

    Article  PubMed  Google Scholar 

  12. Tanimizu N, Ichinohe N, Ishii M et al (2016) Liver progenitors isolated from adult healthy mouse liver efficiently differentiate to functional hepatocytes in vitro and repopulate liver tissue. Stem Cells 34(12):2889–2901. https://doi.org/10.1002/STEM.2457

    Article  CAS  PubMed  Google Scholar 

  13. Tanimizu N, Ichinohe N, Sasaki Y et al (2021) Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nat Commun 12(1). https://doi.org/10.1038/S41467-021-23575-1

  14. Wei Y, Wang YG, Jia Y et al (2021) Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371(6532). https://doi.org/10.1126/science.abb1625

  15. He L, Pu W, Liu X et al (2021) Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371(6532). https://doi.org/10.1126/science.abc4346

  16. Katsuda T, Kawamata M, Hagiwara K et al (2017) Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 20(1):41–55. https://doi.org/10.1016/j.stem.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  17. Zhang K, Zhang L, Liu W et al (2018) In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell 23(6):806–819.e4. https://doi.org/10.1016/j.stem.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  18. Katsuda T, Matsuzaki J, Yamaguchi T et al (2019) Generation of human hepatic progenitor cells with regenerative and metabolic capacities from primary hepatocytes. eLife 8. https://doi.org/10.7554/ELIFE.47313

  19. Chuan PW, Kraaier LJ, Kluiver TA (2021) Hepatocyte organoids and cell transplantation: what the future holds. Exp Mol Med. https://doi.org/10.1038/s12276-021-00579-x

  20. Hu H, Gehart H, Artegiani B et al (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175(6):1591–1606.e19. https://doi.org/10.1016/j.cell.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  21. Peng WC, Logan CY, Fish M et al (2018) Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175(6):1607–1619.e15. https://doi.org/10.1016/j.cell.2018.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yanger K, Zong Y, Maggs LR et al (2013) Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27(7):719–724. https://doi.org/10.1101/gad.207803.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yimlamai D, Christodoulou C, Galli GG et al (2014) Hippo pathway activity influences liver cell fate. Cell 157(6):1324–1338. https://doi.org/10.1016/j.cell.2014.03.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tarlow BD, Pelz C, Naugler WE et al (2014) Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15(5):605–618. https://doi.org/10.1016/j.stem.2014.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanimizu N, Nishikawa Y, Ichinohe N et al (2014) Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM−) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration. J Biol Chem 289(11):7589–7598. https://doi.org/10.1074/JBC.M113.517243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi T, Ninov N, Stainier DYR et al (2014) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146(3):776–788. https://doi.org/10.1053/j.gastro.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  27. Raven A, Lu W, Man TY et al (2017) Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547(7663):350–354. https://doi.org/10.1038/nature23015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schaub JR, Huppert KA, Kurial SNT et al (2018) De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557(7704):247–251. https://doi.org/10.1038/s41586-018-0075-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475(7356):390–395. https://doi.org/10.1038/nature10263

    Article  CAS  PubMed  Google Scholar 

  30. Huang P, He Z, Ji S et al (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475(7356):386–389. https://doi.org/10.1038/nature10116

    Article  CAS  PubMed  Google Scholar 

  31. Rezvani M, Español-Suñer R, Malato Y et al (2016) In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18(6):809–816. https://doi.org/10.1016/j.stem.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song G, Pacher M, Balakrishnan A et al (2016) Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18(6):797–808. https://doi.org/10.1016/j.stem.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  33. Nakano Y, Kamiya A, Sumiyoshi H et al (2020) A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice. Hepatology 71(4). https://doi.org/10.1002/hep.30965/suppinfo

  34. Huang P, Zhang L, Gao Y et al (2014) Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 14(3):370–384. https://doi.org/10.1016/j.stem.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  35. Katayama H, Yasuchika K, Miyauchi Y et al (2017) Generation of non-viral, transgene-free hepatocyte like cells with piggyBac transposon. Sci Rep 7. https://doi.org/10.1038/srep44498

  36. Guo R, Tang W, Yuan Q et al (2017) Chemical cocktails enable hepatic reprogramming of mouse fibroblasts with a single transcription factor. Stem Cell Rep 9(2):499. https://doi.org/10.1016/J.STEMCR.2017.06.013

    Article  CAS  Google Scholar 

  37. Ballester M, Bolonio M, Santamaria R et al (2019) Direct conversion of human fibroblast to hepatocytes using a single inducible polycistronic vector. Stem Cell Res Ther 10(1). https://doi.org/10.1186/s13287-019-1416-5

  38. Nitta S, Kusakari Y, Yamada Y et al (2020) Conversion of mesenchymal stem cells into a canine hepatocyte-like cells by Foxa1 and Hnf4a. Regen Ther 14:165–176. https://doi.org/10.1016/j.reth.2020.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  39. Odom DT, Zizlsperger H, Gordon DB et al (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303(5662):1378–1381. https://doi.org/10.1126/science.1089769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Odom DT, Dowell RD, Jacobsen ES et al (2006) Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol 2. https://doi.org/10.1038/msb4100059

  41. Horisawa K, Udono M, Ueno K et al (2020) The dynamics of transcriptional activation by hepatic reprogramming factors. Mol Cell 79(4):660–676.e8. https://doi.org/10.1016/j.molcel.2020.07.012

    Article  CAS  PubMed  Google Scholar 

  42. Yu B, He ZY, You P et al (2013) Reprogramming fibroblasts into bipotential hepatic stem cells by defined factors. Cell Stem Cell 13(3):328–340. https://doi.org/10.1016/j.stem.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  43. Inada H, Udono M, Matsuda-Ito K et al (2020) Direct reprogramming of human umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells. Nat Commun 11(1):5292. https://doi.org/10.1038/s41467-020-19041-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci 78(12):7634–7638. https://doi.org/10.1073/PNAS.78.12.7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156. https://doi.org/10.1038/292154a0

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/J.CELL.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  48. Banas A, Yamamoto Y, Teratani T et al (2007) Stem cell plasticity: learning from hepatogenic differentiation strategies. Dev Dyn 236(12):3228–3241. https://doi.org/10.1002/dvdy.21330

    Article  CAS  PubMed  Google Scholar 

  49. Song Z, Cai J, Liu Y et al (2009) Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19(11):1233–1242. https://doi.org/10.1038/cr.2009.107

    Article  PubMed  Google Scholar 

  50. Si-Tayeb K, Noto FK, Nagaoka M et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51(1):297–305. https://doi.org/10.1002/hep.23354

    Article  CAS  PubMed  Google Scholar 

  51. Rashid ST, Corbineau S, Hannan N et al (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136. https://doi.org/10.1172/JCI43122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takebe T, Sekine K, Enomura M et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499(7459):481–484. https://doi.org/10.1038/nature12271

    Article  CAS  PubMed  Google Scholar 

  53. Koui Y, Kido T, Ito T et al (2017) An in vitro human liver model by iPSC-derived parenchymal and non-parenchymal cells. Stem Cell Rep 9(2):490–498. https://doi.org/10.1016/J.STEMCR.2017.06.010

    Article  CAS  Google Scholar 

  54. Overeem AW, Klappe K, Parisi S et al (2019) Pluripotent stem cell-derived bile canaliculi-forming hepatocytes to study genetic liver diseases involving hepatocyte polarity. J Hepatol 71(2):344–356. https://doi.org/10.1016/j.jhep.2019.03.031

    Article  PubMed  Google Scholar 

  55. Takeishi K, Hortet AC d l’, Wang Y et al (2020) Assembly and function of a bioengineered human liver for transplantation generated solely from induced pluripotent stem cells. Cell Rep 31(9):107711. https://doi.org/10.1016/J.CELREP.2020.107711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Treyer A, Müsch A (2013) Hepatocyte polarity. Compr Physiol 3(1):243–287. https://doi.org/10.1002/CPHY.C120009

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fu D, Wakabayashi Y, Lippincott-Schwartz J et al (2011) Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proc Natl Acad Sci U S A 108(4):1403–1408. https://doi.org/10.1073/pnas.1018376108

    Article  PubMed  PubMed Central  Google Scholar 

  58. Homolya L, Fu D, Sengupta P et al (2014) LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes. PLoS One 9(3):e91921. https://doi.org/10.1371/journal.pone.0091921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Belicova L, Repnik U, Delpierre J et al (2021) Anisotropic expansion of hepatocyte lumina enforced by apical bulkheads. J Cell Biol 220(10). https://doi.org/10.1083/JCB.202103003

  60. Deguchi S, Shintani T, Harada K et al (2021) In vitro model for a drug assessment of cytochrome P450 family 3 subfamily A member 4 substrates using human induced pluripotent stem cells and genome editing technology. Hepatol Commun 5(8):1385–1399. https://doi.org/10.1002/hep4.1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haridass D, Yuan Q, Becker PD et al (2009) Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am J Pathol 175(4):1483–1492. https://doi.org/10.2353/AJPATH.2009.090117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Tanimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okumura, A., Tanimizu, N. (2022). Preparation of Functional Human Hepatocytes Ex Vivo. In: Tanimizu, N. (eds) Hepatocytes. Methods in Molecular Biology, vol 2544. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2557-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2557-6_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2556-9

  • Online ISBN: 978-1-0716-2557-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics