Skip to main content

Library Synthesis: Building Block Selection, Handling, and Tracking

  • Protocol
  • First Online:
DNA-Encoded Chemical Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2541))

  • 1059 Accesses

Abstract

Careful selection and manipulation of small molecule building blocks is crucial to the success of a DNA-encoded library. Building block selection impacts the quality of the hits arising out of a selection assay, while proper sample handling and tracking ensure follow-up synthetic work is done with the appropriate synthetic map in mind. In this chapter, possible strategies for building block selection are outlined, as well as best practices for handling and tracking samples to be used for validation and library synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark MA, Acharya RA, Arico-Muendel CC, Belyanskaya SL, Benjamin DR, Carlson NR et al (2009) Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat Chem Biol 5(9):647–654. https://doi.org/10.1038/nchembio.211

    Article  CAS  PubMed  Google Scholar 

  2. Deng H, Zhou J, Sundersingh FS, Summerfield J, Somers D, Messer JA et al (2015) Discovery, SAR, and X-ray binding mode study of BCATm inhibitors from a novel DNA-encoded library. ACS Med Chem Lett 6(8):919–924. https://doi.org/10.1021/acsmedchemlett.5b00179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Litovchick A, Dumelin CE, Habeshian S, Gikunju D, Guié MA, Centrella P et al (2015) Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library. Sci Rep 5:10916. https://doi.org/10.1038/srep10916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kollmann CS, Bai X, Tsai CH, Yang H, Lind KE, Skinner SR et al (2014) Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists. Bioorg Med Chem 22(7):2353–2365. https://doi.org/10.1016/j.bmc.2014.01.050

    Article  CAS  PubMed  Google Scholar 

  5. Harris PA, King BW, Bandyopadhyay D, Berger SB, Campobasso N, Capriotti CA et al (2016) DNA-encoded library screening Identifies Benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting Protein 1 Kinase inhibitors. J Med Chem 59(5):2163–2178. https://doi.org/10.1021/acs.jmedchem.5b01898

    Article  CAS  PubMed  Google Scholar 

  6. Deng H, O’Keefe H, Davie CP, Lind KE, Acharya RA, Franklin GJ et al (2012) Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT). J Med Chem 55(16):7061–7079. https://doi.org/10.1021/jm300449x

    Article  CAS  PubMed  Google Scholar 

  7. Zhu Z, Shaginian A, Grady LC, O’Keeffe T, Shi XE, Davie CP et al (2018) Design and application of a DNA-encoded macrocyclic peptide library. ACS Chem Biol 13(1):53–59. https://doi.org/10.1021/acschembio.7b00852

    Article  CAS  PubMed  Google Scholar 

  8. Eidam O, Satz AL (2016) Analysis of the productivity of DNA encoded libraries. MedChemComm 7(7):1323–1331. https://doi.org/10.1039/c6md00221h

    Article  CAS  Google Scholar 

  9. Satz AL, Hochstrasser R, Petersen AC (2017) Analysis of current DNA encoded library screening data indicates higher false negative rates for numerically larger libraries. ACS Comb Sci 19(4):234–238. https://doi.org/10.1021/acscombsci.7b00023

    Article  CAS  PubMed  Google Scholar 

  10. Kalliokoski T (2015) Price-focused analysis of commercially available building blocks for combinatorial library synthesis. ACS Comb Sci 17(10):600–607. https://doi.org/10.1021/acscombsci.5b00063

    Article  CAS  PubMed  Google Scholar 

  11. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3(4):160–178. https://doi.org/10.1016/S1359-6446(97)01163-X

    Article  CAS  Google Scholar 

  12. Leach AR, Bradshaw J, Green DV, Hann MM, Delany JJ 3rd. (1999) Implementation of a system for reagent selection and library enumeration, profiling, and design. J Chem Inf Comput Sci 39(6):1161–1172

    Article  CAS  Google Scholar 

  13. Benigni R, Bossa C (2006) Structural alerts of mutagens and carcinogens. Curr Comput Aided Drug Des 2(2):169–176

    Article  CAS  Google Scholar 

  14. Hale PS (2014) Screening large compound collections. In: Goodnow RA (ed) A handbook for DNA-encoded chemistry. Wiley, Hoboken, pp 281–317

    Chapter  Google Scholar 

  15. Satz AL (2014) Foundations of a DNA-Encoded Library (DEL). In: Goodnow RA (ed) A handbook for DNA-encoded chemistry. Wiley, Hoboken, pp 99–121

    Chapter  Google Scholar 

  16. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1):3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  17. Gillet VJ, Willett P, Bradshaw J, Green DVS (1999) Selecting combinatorial libraries to optimize diversity and physical properties. J Chem Inf Comput Sci 39(1):169–177. https://doi.org/10.1021/ci980332b

    Article  CAS  Google Scholar 

  18. Sadowski J, Kubinyi H (1998) A scoring scheme for discriminating between drugs and nondrugs. J Med Chem 41(18):3325–3329. https://doi.org/10.1021/jm9706776

    Article  CAS  PubMed  Google Scholar 

  19. Oprea TI (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14(3):251–264

    Article  CAS  Google Scholar 

  20. Hann MM, Oprea TI (2004) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 8(3):255–263. https://doi.org/10.1016/j.cbpa.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41(3):856–864

    Article  CAS  Google Scholar 

  22. Teague SJ, Davis AM, Leeson PD, Oprea T (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed 38(24):3743–3748. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U

    Article  CAS  Google Scholar 

  23. Tomizawa K, Sugano K, Yamada H, Horii I (2006) Physicochemical and cell-based approach for early screening of phospholipidosis-inducing potential. J Toxicol Sci 31(4):315–324

    Article  CAS  Google Scholar 

  24. Waring MJ, Johnstone C (2007) A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg Med Chem Lett 17(6):1759–1764. https://doi.org/10.1016/j.bmcl.2006.12.061

    Article  CAS  PubMed  Google Scholar 

  25. Waring MJ (2009) Defining optimum lipophilicity and molecular weight ranges for drug candidates-molecular weight dependent lower logD limits based on permeability. Bioorg Med Chem Lett 19(10):2844–2851. https://doi.org/10.1016/j.bmcl.2009.03.109

    Article  CAS  PubMed  Google Scholar 

  26. Gleeson MP, Hersey A, Montanari D, Overington J (2011) Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov 10:197. https://doi.org/10.1038/nrd3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peters JU, Schnider P, Mattei P, Kansy M (2009) Pharmacological promiscuity: dependence on compound properties and target specificity in a set of recent Roche compounds. ChemMedChem 4(4):680–686. https://doi.org/10.1002/cmdc.200800411

    Article  CAS  PubMed  Google Scholar 

  28. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475. https://doi.org/10.1038/nrd4609

    Article  CAS  PubMed  Google Scholar 

  29. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39(15):2887–2893. https://doi.org/10.1021/jm9602928

    Article  CAS  PubMed  Google Scholar 

  30. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Darren Green, Chris Davie, and Yun Ding for their feedback in review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katelyn J. Billings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Billings, K.J., Grenier-Davies, M.C. (2022). Library Synthesis: Building Block Selection, Handling, and Tracking. In: Israel, D., Ding, Y. (eds) DNA-Encoded Chemical Libraries. Methods in Molecular Biology, vol 2541. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2545-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2545-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2544-6

  • Online ISBN: 978-1-0716-2545-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics