Skip to main content

Gene Co-expression Network Analysis and Linking Modules to Phenotyping Response in Plants

  • Protocol
  • First Online:
High-Throughput Plant Phenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2539))

Abstract

Environmental factors, including different stresses, can have an impact on the expression of genes and subsequently the phenotype and development of plants. Since a large number of genes are involved in response to the perturbation of the environment, identifying groups of co-expressed genes is meaningful. The gene co-expression network models can be used for the exploration, interpretation, and identification of genes responding to environmental changes. Once a gene co-expression network is constructed, one can determine gene modules and the association of gene modules to the phenotypic response. To link modules to phenotype, one approach is to find the correlated eigengenes of given modules or to integrate all eigengenes in regularized linear model. This manuscript describes the method from construction of co-expression network, module discovery, association between modules and phenotypic data, and finally to annotation/visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mao L, Van Hemert JL, Dash S et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinform 10:346. https://doi.org/10.1186/1471-2105-10-346

    Article  CAS  Google Scholar 

  2. Movahedi S, Van Bel M, Heyndrickx KS et al (2012) Comparative co-expression analysis in plant biology. Plant Cell Environ 35(10):1787–1798. https://doi.org/10.1111/j.1365-3040.2012.02517.x

    Article  CAS  PubMed  Google Scholar 

  3. Ruprecht C, Persson S (2012) Co-expression of cell-wall related genes: new tools and insights. Front Plant Sci 3:83. https://doi.org/10.3389/fpls.2012.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang Y, Han L, Yuan Y et al (2014) Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun 5:3231. https://doi.org/10.1038/ncomms4231

    Article  CAS  PubMed  Google Scholar 

  5. Tan M, Cheng D, Yang Y et al (2017) Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biol 17(1):194. https://doi.org/10.1186/s12870-017-1143-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kadarmideen HN, Watson-Haigh NS (2012) Building gene co-expression networks using transcriptomics data for systems biology investigations: comparison of methods using microarray data. Bioinformation 8(18):855–861. https://doi.org/10.6026/97320630008855

    Article  PubMed  PubMed Central  Google Scholar 

  7. Villa-Vialaneix N, Liaubet L, Laurent T et al (2013) The structure of a gene co-expression network reveals biological functions underlying eQTLs. PLoS One 8(4):e60045. https://doi.org/10.1371/journal.pone.0060045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ficklin SP, Luo F, Feltus FA (2010) The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. Plant Physiol 154(1):13–24. https://doi.org/10.1104/pp.110.159459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  Google Scholar 

  10. Schafer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764. https://doi.org/10.1093/bioinformatics/bti062

    Article  PubMed  Google Scholar 

  11. Gao C, McDowell IC, Zhao S et al (2016) Context specific and differential gene co-expression networks via bayesian biclustering. PLoS Comput Biol 12(7):e1004791. https://doi.org/10.1371/journal.pcbi.1004791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang HQ, Tsai CJ (2013) CorSig: a general framework for estimating statistical significance of correlation and its application to gene co-expression analysis. PLoS One 8(10):e77429. https://doi.org/10.1371/journal.pone.0077429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Watson-Haigh NS, Kadarmideen HN, Reverter A (2010) PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics 26(3):411–413. https://doi.org/10.1093/bioinformatics/btp674

    Article  CAS  PubMed  Google Scholar 

  14. Liang M, Zhang F, Jin G et al (2015) FastGCN: a GPU accelerated tool for fast gene co-expression networks. PLoS One 10(1):e0116776. https://doi.org/10.1371/journal.pone.0116776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Z, Fang H, Tang NL et al (2017) VCNet: vector-based gene co-expression network construction and its application to RNA-seq data. Bioinformatics 33(14):2173–2181. https://doi.org/10.1093/bioinformatics/btx131

    Article  CAS  PubMed  Google Scholar 

  16. Virlouvet L, Avenson TJ, Du Q et al (2018) Dehydration stress memory: gene networks linked to physiological responses during repeated stresses of Zea mays. Front Plant Sci 9:1058. https://doi.org/10.3389/fpls.2018.01058

    Article  PubMed  PubMed Central  Google Scholar 

  17. Di Salle P, Incerti G, Colantuono C et al (2017) Gene co-expression analyses: an overview from microarray collections in Arabidopsis thaliana. Brief Bioinform 18(2):215–225. https://doi.org/10.1093/bib/bbw002

    Article  CAS  PubMed  Google Scholar 

  18. van Dam S, Vosa U, van der Graaf A et al (2018) Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform 19(4):575–592. https://doi.org/10.1093/bib/bbw139

    Article  CAS  PubMed  Google Scholar 

  19. Borate BR, Chesler EJ, Langston MA et al (2009) Comparison of threshold selection methods for microarray gene co-expression matrices. BMC Res Notes 2:240. https://doi.org/10.1186/1756-0500-2-240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee HK, Hsu AK, Sajdak J et al (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14(6):1085–1094. https://doi.org/10.1101/gr.1910904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stuart JM, Segal E, Koller D et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. https://doi.org/10.1126/science.1087447

    Article  CAS  PubMed  Google Scholar 

  22. Boyle EI, Weng S, Gollub J et al (2004) GO::TermFinder--open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20(18):3710–3715. https://doi.org/10.1093/bioinformatics/bth456

    Article  CAS  PubMed  Google Scholar 

  23. Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382. https://doi.org/10.1038/nprot.2007.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Obayashi T, Kinoshita K, Nakai K et al (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res 35:D863–D869. https://doi.org/10.1093/nar/gkl783

    Article  CAS  PubMed  Google Scholar 

  25. Ogata Y, Suzuki H, Sakurai N et al (2010) CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 26(9):1267–1268. https://doi.org/10.1093/bioinformatics/btq121

    Article  CAS  PubMed  Google Scholar 

  26. Yim WC, Yu Y, Song K et al (2013) PLANEX: the plant co-expression database. BMC Plant Biol 13:83. https://doi.org/10.1186/1471-2229-13-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Netotea S, Sundell D, Street NR et al (2014) ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genomics 15:106. https://doi.org/10.1186/1471-2164-15-106

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ma S, Bohnert HJ, Dinesh-Kumar SP (2015) AtGGM2014, an Arabidopsis gene co-expression network for functional studies. Sci China Life Sci 58(3):276–286. https://doi.org/10.1007/s11427-015-4803-x

    Article  CAS  PubMed  Google Scholar 

  29. Desai AP, Razeghin M, Meruvia-Pastor O et al (2017) GeNET: a web application to explore and share gene co-expression network analysis data. PeerJ 5:e3678. https://doi.org/10.7717/peerj.3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wong DC, Sweetman C, Drew DP et al (2013) VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine). BMC Genomics 14:882. https://doi.org/10.1186/1471-2164-14-882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamada K, Hongo K, Suwabe K et al (2011) OryzaExpress: an integrated database of gene expression networks and omics annotations in rice. Plant Cell Physiol 52(2):220–229. https://doi.org/10.1093/pcp/pcq195

    Article  CAS  PubMed  Google Scholar 

  32. Lin H, Yu J, Pearce SP et al (2017) RiceAntherNet: a gene co-expression network for identifying anther and pollen development genes. Plant J 92(6):1076–1091. https://doi.org/10.1111/tpj.13744

    Article  CAS  PubMed  Google Scholar 

  33. Ballouz S, Verleyen W, Gillis J (2015) Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics 31(13):2123–2130. https://doi.org/10.1093/bioinformatics/btv118

    Article  CAS  PubMed  Google Scholar 

  34. Daub CO, Steuer R, Selbig J et al (2004) Estimating mutual information using B-spline functions-an improved similarity measure for analysing gene expression data. BMC Bioinform 5:118. https://doi.org/10.1186/1471-2105-5-118

    Article  CAS  Google Scholar 

  35. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13:328. https://doi.org/10.1186/1471-2105-13-328

    Article  CAS  Google Scholar 

  36. Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput: 418–429

    Google Scholar 

  37. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17. https://doi.org/10.2202/1544-6115.1128

    Article  PubMed  Google Scholar 

  38. Wang Z, San Lucas FA, Qiu P et al (2014) Improving the sensitivity of sample clustering by leveraging gene co-expression networks in variable selection. BMC Bioinform 15:153. https://doi.org/10.1186/1471-2105-15-153

    Article  Google Scholar 

  39. Serin EA, Nijveen H, Hilhorst HW et al (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444. https://doi.org/10.3389/fpls.2016.00444

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work is supported by funding under the National Science Foundation (Awards OIA-1557417 to CZ, DBI-1564621 to CZ HW and QZ, and OIA-1736192 to CZ HW and QZ). This work was completed utilizing the Holland Computing Center of the University of Nebraska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Du, Q. et al. (2022). Gene Co-expression Network Analysis and Linking Modules to Phenotyping Response in Plants. In: Lorence, A., Medina Jimenez, K. (eds) High-Throughput Plant Phenotyping. Methods in Molecular Biology, vol 2539. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2537-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2537-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2536-1

  • Online ISBN: 978-1-0716-2537-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics