Skip to main content

Design and Construction of Unmanned Ground Vehicles for Sub-canopy Plant Phenotyping

  • Protocol
  • First Online:
High-Throughput Plant Phenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2539))

  • 804 Accesses

Abstract

Unmanned ground vehicles can capture a sub-canopy perspective for plant phenotyping, but their design and construction can be a challenge for scientists unfamiliar with robotics. Here we describe the necessary components and provide guidelines for designing and constructing an autonomous ground robot that can be used for plant phenotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Furbank RT, Tester M (2011) Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644. https://doi.org/10.1016/j.tplants.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Baharav T, Bariya M, Zakhor A (2017) In situ height and width estimation of sorghum plants from 2.5D infrared images. Elect Imaging 17:122–135. https://doi.org/10.2352/issn.2470-1173.2017.17.coimg-435

    Article  Google Scholar 

  3. Zhang J, Singh A, Lofquist A et al (2018) A novel multirobot system for plant phenotyping. Robotics 7(4):61. https://doi.org/10.3390/robotics7040061

    Article  Google Scholar 

  4. Grimstad L, From P (2017) The Thorvald II agricultural robotic system. Robotics 6(4):24

    Article  Google Scholar 

  5. Bawden O, Ball D, Kulk J et al (2014) A lightweight, modular robotic vehicle for the sustainable intensification of agriculture. Proc of 16th ARAA ACRA, 1–9

    Google Scholar 

  6. Young SN, Kayacan E, Peschel JM (2018) Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precision Ag. https://doi.org/10.1007/s11119-018-9601-6

  7. Mueller-Sim T, Jenkins M, Abel J et al (2017) The Robotanist: a ground-based agricultural robot for high-throughput crop phenotyping. ICRA:3634–3639

    Google Scholar 

  8. https://doi.org/10.1109/ICRA.2017.7989418

  9. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opin Plant Biol 24:93–99. https://doi.org/10.1016/j.pbi.2015.02.006

    Article  Google Scholar 

  10. Fahlgren N, Feldman M, Gehan MA et al (2015) A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol Plant 8(10):1520–1535. https://doi.org/10.1016/j.molp.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  11. Singh A, Ganapathysubramanian B, Singh AK et al (2016) Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21(2):110–124. https://doi.org/10.1016/j.tplants.2015.10.015

    Article  CAS  Google Scholar 

  12. Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors 14(11):20078–20111. https://doi.org/10.3390/s141120078

    Article  Google Scholar 

  13. Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114(4):358–371. https://doi.org/10.1016/j.biosystemseng.2012.08.009

    Article  Google Scholar 

  14. Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41(1):35–44. https://doi.org/10.1016/0034-4257(92)90059-S

    Article  Google Scholar 

  15. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  16. Adão T, Hruška J, Pádua L et al (2017) Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens 9(11):1110

    Article  Google Scholar 

  17. Kise M, Zhang Q, Rovira Más F (2005) A stereovision-based crop row detection method for tractor-automated guidance. Biosyst Eng 90(4):357–367. https://doi.org/10.1016/j.biosystemseng.2004.12.008

    Article  Google Scholar 

  18. Klose R, Penlington J, Ruckelshausen A (2011) Usability of 3D time-of-flight cameras for automatic plant phenotyping. Bornimer Agrartechnische Berichte 69:93–105

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Delaware Biosciences Center for Advanced Technology Entrepreneurial Proof of Concept Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Sparks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stager, A., Tanner, H.G., Sparks, E. (2022). Design and Construction of Unmanned Ground Vehicles for Sub-canopy Plant Phenotyping. In: Lorence, A., Medina Jimenez, K. (eds) High-Throughput Plant Phenotyping. Methods in Molecular Biology, vol 2539. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2537-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2537-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2536-1

  • Online ISBN: 978-1-0716-2537-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics