Skip to main content

Genotyping-by-Sequencing (GBS ) Method for Accelerating Marker-Assisted Selection (MAS) Program

  • Protocol
  • First Online:
Genomics of Cereal Crops

Abstract

Marker-assisted selection (MAS) plays a pivotal role in a breeding program where molecular DNA markers are used for phenotypic selections in crop improvement. Several markers have been used where SNPs (single-nucleotide polymorphisms) have been identified and effectively used. Next-generation sequencing (NGS) technologies have made significant changes to whole-genome sequencing revolutionizing plant breeding. Genotype by sequencing (GBS) is a rapid, cost-effective, and high-throughput method in NGS which enables genotyping of large populations with the discovery of SNPs. The GBS approach includes digestion of genomic DNA with restriction enzymes followed by ligation of barcode adapters, PCR amplification, and sequencing of the amplified DNA pool on a single lane of flow cells. This method has been developed and applied in the sequencing of multiplexed genomic samples. GBS is implemented successfully in genome-wide association study (GWAS), diversity studies, QTL mapping, genetic linkage analysis, marker discovery, and genomic selection under large-scale plant breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Melake-Berhan A, Hulbert SH, Butler LG, Bennetzen JL (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86:598–604

    Article  Google Scholar 

  3. Ejeta G, Knoll JE (2007) Marker-assisted selection in sorghum. In: Genomics-assisted crop improvement, vol 2. Springer, New York, pp 187–205. https://doi.org/10.1007/978-1-4020-6297-1

    Chapter  Google Scholar 

  4. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  Google Scholar 

  5. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993. https://doi.org/10.1007/BF00215038

    Article  CAS  PubMed  Google Scholar 

  6. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410. https://doi.org/10.1046/j.1365-313X.1993.04020403

    Article  CAS  PubMed  Google Scholar 

  7. Litt M, Luty JA (1986) A hypervariable microsatellite revealed by invitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    Google Scholar 

  8. Salimath SS, de Oliveira AC, Bennetzen J, Godwin ID (1995) Assessment of genomic origin and genetic diversity in the genus Eleusine with DNA markers. Genome 38:757–763. https://doi.org/10.1139/g95-096

    Article  CAS  PubMed  Google Scholar 

  9. Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  Google Scholar 

  10. Desmarais D, Zhong Y, Chakraborty R, Perreault C, Busque L (1998) Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene (HUMARA). J Forensic Sci 43(5):1046–1049

    Article  CAS  Google Scholar 

  11. Wang DG, Fan JB, Siao CJ, Berno A, Young P et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082

    Article  CAS  Google Scholar 

  12. Getachew SE, Bille NH, Bell JM, Gebreselassie W (2019) Genotyping by sequencing for plant breeding- a review. Adv Biotechnol Microbiol 14:555891. https://doi.org/10.19080/AIBM.2019.14.555891

    Article  Google Scholar 

  13. He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:1–8. https://doi.org/10.3389/fpls.2014.00484

    Article  Google Scholar 

  14. Madhusudhana R (2019) Marker-assisted breeding in sorghum. In: Breeding sorghum for diverse end uses, pp 93–114. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101879-8.00006-1

  15. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E et al (2005) Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult 82:317–342. https://doi.org/10.1007/s11240-005-2387-z

    Article  CAS  Google Scholar 

  16. Yoshimura S, Yoshimura A, Iwata N, Mccouch SR, Abenes ML, Baraoidan MR, Mew TW, Nelson RJ (1995) Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed 1:375–387

    Article  CAS  Google Scholar 

  17. Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genomics 11:3–11. https://doi.org/10.1093/bfgp/elr045

    Article  CAS  PubMed  Google Scholar 

  18. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG..., Roe PM (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59. https://doi.org/10.1038/nature07517

  19. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352. https://doi.org/10.1038/nature10242

    Article  CAS  PubMed  Google Scholar 

  20. Metzker ML (2010) Sequencing technologies–the next generation. Nat Rev Genet 11:31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  21. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402. https://doi.org/10.1146/annurev.genom.9.081307.164359

    Article  CAS  PubMed  Google Scholar 

  22. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM, Muttoni G et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081. https://doi.org/10.1534/genetics.112.147710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H et al (2014) Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genomics 15:1–23. https://doi.org/10.1186/1471-2164-15-979

    Article  Google Scholar 

  25. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. https://doi.org/10.1038/nrg3012

    Article  CAS  PubMed  Google Scholar 

  26. Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R et al (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2. https://doi.org/10.1186/1471-2164-14-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253. https://doi.org/10.1371/journal.pone.0032253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abebe KS (2019) Genotype by sequencing method and its application for crop improvement (a review). Adv Biosci Bioeng 7(1):1

    Google Scholar 

  29. Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15(2):149–161

    Article  CAS  Google Scholar 

  30. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483. https://doi.org/10.3390/biology1030460

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL et al (2009) SHORE map: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551. https://doi.org/10.1038/nmeth0809-550

    Article  CAS  PubMed  Google Scholar 

  32. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM et al (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55. https://doi.org/10.1186/gb-2013-14-6-r55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P et al (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648. https://doi.org/10.1007/s11032-008-9205-3

    Article  CAS  Google Scholar 

  34. Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059. https://doi.org/10.1038/ng.715

    Article  CAS  PubMed  Google Scholar 

  35. Uitdewilligen JGML, Wolters AMA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8:e62355. https://doi.org/10.1371/journal.pone.0062355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu YB, Peterson GW (2011) Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool. Plant Genome 4:226–237

    Article  CAS  Google Scholar 

  37. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215

    Article  CAS  Google Scholar 

  38. Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S et al (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716. https://doi.org/10.1007/s00122-013-2166-x

    Article  CAS  PubMed  Google Scholar 

  39. Slavov GT, Nipper R, Robson P, Farrar K, Allison GG, Bosch M, Clifton-Brown JC et al (2014) Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytol 201:1227–1239

    Article  CAS  Google Scholar 

  40. Somegowda VK, Rayaprolu L, Rathore A, Deshpande SP, Gupta R (2021) Genome-wide association studies (GWAS) for traits related to fodder quality and biofuel in sorghum: progress and prospects. Protein Pept Lett 28:1. https://doi.org/10.2174/0929866528666210127153103

    Article  CAS  Google Scholar 

  41. Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5(6):505–510

    Article  Google Scholar 

  42. Dukić M, Berner D, Roesti M, Haag CR, Ebert D (2016) A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna. BMC Genet 17:137. https://doi.org/10.1186/s12863-016-0445-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rayaprolu, L., Deshpande, S.P., Gupta, R. (2022). Genotyping-by-Sequencing (GBS ) Method for Accelerating Marker-Assisted Selection (MAS) Program. In: Wani, S.H., Kumar, A. (eds) Genomics of Cereal Crops. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2533-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2533-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2532-3

  • Online ISBN: 978-1-0716-2533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics