Skip to main content

An Optimized Protocol for the Mapping of Cell Type–Specific Ribosome-Associated Transcript Isoforms from Small Mouse Brain Regions

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

Abstract

Over the past years, technological advances in transcriptomics provided deep insights into gene expression programs and their role in tissue organization and cellular functions. The isolation of ribosome-associated transcripts is a powerful approach for deep profiling of cell type–specific transcripts, and particularly well-suited for quantitative analysis of transcript isoforms. This method employs conditional ribosome epitope-tagging in genetically defined cell types, followed by affinity-isolation of ribosome-associated mRNAs. Advantages of this approach are twofold: first, the method enables rapid retrieval of mRNAs without tissue dissociation and cell sorting steps. Second, capturing of ribosome-associated mRNAs, enriches for transcripts recruited for active translation, therefore providing an approximation to the cellular translatome. Here, we describe one application of this method for the identification of the transcriptome of excitatory neuronal cells (mitral and tufted cells) of the mouse olfactory bulb, through RiboTag isolation from the vGlut2-IRES-cre mouse line as genetic driver of endogenously tagged ribosome expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, Haring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014 e1022

    Article  CAS  Google Scholar 

  2. Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18(9):530–546

    Article  CAS  Google Scholar 

  3. Nguyen TM, Schreiner D, Xiao L, Traunmuller L, Bornmann C, Scheiffele P (2016) An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus. eLife 5:e22757

    Article  Google Scholar 

  4. Wamsley B, Jaglin XH, Favuzzi E, Quattrocolo G, Nigro MJ, Yusuf N, Khodadadi-Jamayran A, Rudy B, Fishell G (2018) Rbfox1 mediates cell-type-specific splicing in cortical interneurons. Neuron 100(4):846–859.e7

    Article  CAS  Google Scholar 

  5. Gonatopoulos-Pournatzis T, Niibori R, Salter EW, Weatheritt RJ, Tsang B, Farhangmehr S, Liang X, Braunschweig U, Roth J, Zhang S, Henderson T, Sharma E, Quesnel-Vallieres M, Permanyer J, Maier S, Georgiou J, Irimia M, Sonenberg N, Forman-Kay JD, Gingras AC, Collingridge GL, Woodin MA, Cordes SP, Blencowe BJ (2020) Autism-Misregulated eIF4G microexons control synaptic translation and higher order cognitive functions. Mol Cell 77(6):1176–1192 e1116

    Article  CAS  Google Scholar 

  6. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, Hartl C, Leppa V, Ubieta LT, Huang J, Lowe JK, Blencowe BJ, Horvath S, Geschwind DH (2016) Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540(7633):423–427

    Article  CAS  Google Scholar 

  7. Furlanis E, Scheiffele P (2018) Regulation of neuronal differentiation, function, and plasticity by alternative splicing. Annu Rev Cell Dev Biol 34:451–469

    Article  CAS  Google Scholar 

  8. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    Article  CAS  Google Scholar 

  9. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165(3):535–550

    Article  CAS  Google Scholar 

  10. Weatheritt RJ, Sterne-Weiler T, Blencowe BJ (2016) The ribosome-engaged landscape of alternative splicing. Nat Struct Mol Biol 23(12):1117–1123

    Article  CAS  Google Scholar 

  11. Crouch EE, Doetsch F (2018) FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat Protoc 13(4):738–751

    Article  CAS  Google Scholar 

  12. Tischfield DJ, Anderson SA (2017) Differentiation of mouse embryonic stem cells into cortical interneuron precursors. J Vis Exp 130:56358

    Google Scholar 

  13. van den Brink SC, Sage F, Vertesy A, Spanjaard B, Peterson-Maduro J, Baron CS, Robin C, van Oudenaarden A (2017) Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 14(10):935–936

    Article  Google Scholar 

  14. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suarez-Farinas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135(4):738–748

    Article  CAS  Google Scholar 

  15. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS (2009) Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci U S A 106(33):13939–13944

    Article  CAS  Google Scholar 

  16. Thomas A, Lee PJ, Dalton JE, Nomie KJ, Stoica L, Costa-Mattioli M, Chang P, Nuzhdin S, Arbeitman MN, Dierick HA (2012) A versatile method for cell-specific profiling of translated mRNAs in drosophila. PLoS One 7(7):e40276

    Article  CAS  Google Scholar 

  17. Gregory JA, Hoelzli E, Abdelaal R, Braine C, Cuevas M, Halpern M, Barretto N, Schrode N, Akbalik G, Kang K, Cheng E, Bowles K, Lotz S, Goderie S, Karch CM, Temple S, Goate A, Brennand KJ, Phatnani H (2020) Cell type-specific in vitro gene expression profiling of stem cell-derived neural models. Cell 9(6):1406

    Article  CAS  Google Scholar 

  18. Mardinly AR, Spiegel I, Patrizi A, Centofante E, Bazinet JE, Tzeng CP, Mandel-Brehm C, Harmin DA, Adesnik H, Fagiolini M, Greenberg ME (2016) Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature 531(7594):371–375

    Article  CAS  Google Scholar 

  19. Thomson SR, Seo SS, Barnes SA, Louros SR, Muscas M, Dando O, Kirby C, Wyllie DJA, Hardingham GE, Kind PC, Osterweil EK (2017) Cell-type-specific translation profiling reveals a novel strategy for treating fragile X syndrome. Neuron 95(3):550–563 e555

    Article  CAS  Google Scholar 

  20. Gonzalez C, Sims JS, Hornstein N, Mela A, Garcia F, Lei L, Gass DA, Amendolara B, Bruce JN, Canoll P, Sims PA (2014) Ribosome profiling reveals a cell-type-specific translational landscape in brain tumors. J Neurosci 34(33):10924–10936

    Article  Google Scholar 

  21. Furlanis E, Traunmuller L, Fucile G, Scheiffele P (2019) Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs. Nat Neurosci 22(10):1709–1717

    Article  CAS  Google Scholar 

  22. Lee H, Fenster RJ, Pineda SS, Gibbs WS, Mohammadi S, Davila-Velderrain J, Garcia FJ, Therrien M, Novis HS, Gao F, Wilkinson H, Vogt T, Kellis M, LaVoie MJ, Heiman M (2020) Cell type-specific transcriptomics reveals that mutant huntingtin leads to mitochondrial RNA release and neuronal innate immune activation. Neuron 107(5):891–908 e898

    Article  CAS  Google Scholar 

  23. Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, Furlanis E, Gomez AM, Hoshina N, Huang WH, Hutchison MA, Itoh-Maruoka Y, Lavery LA, Li W, Maruo T, Motohashi J, Pai EL, Pelkey KA, Pereira A, Philips T, Sinclair JL, Stogsdill JA, Traunmuller L, Wang J, Wortel J, You W, Abumaria N, Beier KT, Brose N, Burgess HA, Cepko CL, Cloutier JF, Eroglu C, Goebbels S, Kaeser PS, Kay JN, Lu W, Luo L, Mandai K, McBain CJ, Nave KA, Prado MAM, Prado VF, Rothstein J, Rubenstein JLR, Saher G, Sakimura K, Sanes JR, Scheiffele P, Takai Y, Umemori H, Verhage M, Yuzaki M, Zoghbi HY, Kawabe H, Craig AM (2020) Optimizing nervous system-specific gene targeting with Cre driver lines: prevalence of germline recombination and influencing factors. Neuron 106(1):37–65 e35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to O. Mauger and E. Furlanis for constructive comments on the chapter manuscript and to T.M. Nguyen, L. Traunmüller, E. Furlanis, and S. Falkner for discussions and help in setting up the protocol for RiboTRAP purifications. Work in the laboratory was supported by funds to P.S. from the Swiss National Science Foundation, a European Research Council Advanced Grant (SPLICECODE), EU-AIMS and AIMS-2-TRIALS which are supported by the Innovative Medicines Initiatives from the European Commission. The results leading to this publication has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 777394. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The Scheiffele Laboratory is an associate member of the Swiss National Science Foundation’s National Competence Centre for Research (NCCR) RNA and Disease.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giulia Di Bartolomei or Peter Scheiffele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Di Bartolomei, G., Scheiffele, P. (2022). An Optimized Protocol for the Mapping of Cell Type–Specific Ribosome-Associated Transcript Isoforms from Small Mouse Brain Regions. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics