Skip to main content

Somatic Embryogenesis in Banana (Musa spp.)

  • Protocol
  • First Online:
Somatic Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2527))

Abstract

Bananas (Musa ssp.) are among the world’s most important crops. In terms of gross value of production, they are the fourth most important global food crop and have an important socioeconomic and ecological role. Somatic embryogenesis (SE) is a developmental process, in which somatic cells differentiate into embryos which eventually develop and regenerate into plants. SE is exploited to generate a large quantity of very high economic value, genetically identical and disease-free plantlets. In bananas, the use of shoot apexes of axillary buds to induce SE resulted an alternative for plant regeneration through embryogenic cell suspension (ECS). The protocol has been scaled up to commercial laboratories for tissue culture (biofactories) for production of planting materials. The genetic stability of regenerated plants and high yields obtained under field conditions demonstrate the feasibility of scaling up this biotechnological protocol and adapting it to commercial production of planting materials to mitigate a critical bottleneck in the value chain of this important crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Menon R (2016) Banana breeding Springer 2016. In: Mohandas S, Ravishankar KV (eds) Banana: genomics and transgenic approaches for genetic improvement. Springer India https://doi.org/10.1007/978-981-10-1585-4

  2. Singh R, Kaushik R, Gosewade S (2018) Bananas as underutilized fruit having huge potential as raw materials for food and non-food processing industries: a brief review. J Pharm Innov 7(6):574–580

    Google Scholar 

  3. De Langhe EA, Vrydaghs L, de Maret P et al (2008) Why bananas matter: an introduction to the history of banana domestication. Ethnobot Res Appl 7:165–174. https://doi.org/10.17348/era.7.0.165-177

    Article  Google Scholar 

  4. Alakonya AE, Kimunye J, Mahuku G et al (2018) Progress in understanding Pseudocercospora banana pathogens and the development of resistant Musa germplasm. Plant Pathol 67(4):759–770. https://doi.org/10.1111/ppa.12824

    Article  Google Scholar 

  5. Bubici G, Kaushal M, Prigigallo MI et al (2019) Biological control agents against fusarium wilt of Banana. Front Microbiol 10:616. https://doi.org/10.3389/fmicb.2019.00616

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ravi I, Vaganan MM (2016) Abiotic stress tolerance in Banana. In: Rao N, Shivashankara K, Laxman R (eds) Abiotic stress physiology of horticultural crops. Springer, New Delhi

    Google Scholar 

  7. Robooni T, Talengera D (2018) Improved propagation techniques to enhance the productivity of banana (Musa spp.) open. Agriculture 3:138–145

    Google Scholar 

  8. López J (2020) Recuperación de la diversidad de plátano y banano para el desarrollo local del ecosistema de montaña. In: Informe Final Proyecto P131LH001234. Instituto de Investigaciones de viandas Tropicales, Cuba, p 37

    Google Scholar 

  9. López J, Santos-Ordoñez E, González L (2020) Complementation of bananas conventional breeding programs through biotechnological genetic improvement. In: Chong PA, Newman DJ, Steinmacher DA (eds) Agricultural, forestry and bioindustry biotechnology and biodiscovery. Springer Nature Switzerland AG, Cham. https://doi.org/10.1007/978-3-030-51358-0_3

    Chapter  Google Scholar 

  10. López J, Montano N, Reinaldo D et al (2013) Somatic embryogenesis for the production of plantain planting materials in Cuba. In: Ruane J, Dargie JD, Mba C et al (eds) Biotechnologies at work for smallholders: case studies from developing countries in crops, livestock and fish. FAO, Roma, pp 47–55

    Google Scholar 

  11. Strosse H, Domergue R, Panis B et al (2003) Banana and plantain embryogenic cell suspensions. Technical guidelines 8. INIBAP, Montpellier, France, p 36

    Google Scholar 

  12. Uma S, Kumaravel M, Backiyarani S et al (2021) Somatic embryogenesis as a tool for reproduction of genetically stable plants in banana and confirmatory field trials. Plant Cell Tissue Organ Cult 147:181–188. https://doi.org/10.1007/s11240-021-02108-0

    Article  CAS  Google Scholar 

  13. Rustagi A, Shekhar S, Kumar D et al (2019) High speed regeneration via somatic embryogenesis in elite Indian banana cv. Somrani monthan (ABB). Vegetos 32:39–47. https://doi.org/10.1007/s42535-019-00005-8

    Article  Google Scholar 

  14. Debbarma R, Sudhakar D, Kumar KK et al (2019) Morphological development and ultrastructural changes during somatic embryogenesis of popular Banana cultivars. Int J Curr Microbiol App Sci 8(6):1676–1683. https://doi.org/10.20546/ijcmas.2019.806.200

    Article  CAS  Google Scholar 

  15. Enríquez-Valencia AJ, Vázquez-Flota FA, Ku-Cauich JR et al (2019) Differentially expressed genes during the transition from early to late development phases in somatic embryo of banana (Musa spp. AAB group, silk subgroup) cv. Manzano. Plant Cell Tissue Organ Cult 136:289–302. https://doi.org/10.1007/s11240-018-1514-6

    Article  CAS  Google Scholar 

  16. Kumaravel M, Uma S, Backiyarani S et al (2020) Proteomic analysis of somatic embryo development in Musa spp. cv. Grand naine (AAA). Sci Rep 10:4501. https://doi.org/10.1038/s41598-020-61005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. López J, Gómez R, Rayas A et al (2005) Embriogénesis somática en el cv. ‘Navolean’ a partir de ápices de brotes de yemas axilares. Biotecnología Vegetal 5(2):109–113. ISSN 2074-8647

    Google Scholar 

  18. López J, Alemán RA, Montano N et al (2015) Regeneración de plantas por embriogénesis somática del cultivar de plátano vianda ‘Zanzíbar’ (Musa spp.). Rev Agric Tropical 1(1):12–21. ISSN: 2517-9292

    Google Scholar 

  19. Gómez R, Chong-Pérez B, López-Torres J et al (2010) Plantain (Musa spp. cv. ‘Navolean’ AAB) transgenic plants from Agrobacterium tumefaciens-mediated transformation of embryogenic cell suspensions. Biotecnología Vegetal 10(4):209–218. ISSN 2074–8647

    Google Scholar 

  20. Tripathi JN, Oduor RO, Tripathi L (2015) A high-throughput regeneration and transformation platform for production of genetically modified banana. Methods 6(1025):1–13. https://doi.org/10.3389/fpls.2015.01025

    Article  Google Scholar 

  21. Sales E, López J, Espino R et al (2013) Improvement of bananas through gamma ray irradiation. Philipp J Crop Sci 38(2):47–53

    Google Scholar 

  22. López J, Rayas A, Santos A et al (2017) Mutation induction using gamma irradiation and embryogenic cell suspensions in plantain (Musa spp.). In: Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ (eds) Biotechnologies for plant mutation breeding protocols. Springer Open FAO/IAEA. AG, Switzerland, pp 55–71

    Chapter  Google Scholar 

  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  24. IPGRI-INIBAP/CIRAD (1996) Descriptores para el banano (Musa spp.). Instituto International de Recursos Fitogeneticos, Roma, Italia; Red International para el Mejoramiento del Banano y el Plátano, Montpellier, Francia; y el Centre de cooperation internationale en recherche agronomique pour le developpement, Montpellier, Francia

    Google Scholar 

  25. López J (2006) Nueva metodología Para el desarrollo de la embriogénesis somática en el cultivar de plátano vianda ‘Navolean’ (Musa spp., Grupo AAB), thesis presented in option to the scientific degree of doctor in agricultural sciences. Bioplants Centre. Ciego de Ávila university, Ciego de Ávila, Cuba, p 100

    Google Scholar 

  26. López J, Gómez R, Montano N (2012) New explant for somatic embryogenesis induction and plant regeneration from diploid banana (‘Calcutta 4’, Musa AA). Biotecnología Vegetal 12(1):25–31. ISSN 2074–8647

    Google Scholar 

  27. Van den Houwe I, Guns J, Swennen R (1998) Bacterial contamination in Musa shoot tip cultures. Acta Hortic 490:485–492

    Article  Google Scholar 

  28. Rodríguez D, López J, Montano N (2016) Embriogénesis somática y regeneración de plantas en FHIA-25, Musa spp. Una alternativa para el mejoramiento genético. Editorial Académica Española 73 pp ISSN: 978-3-659-70393-5

    Google Scholar 

  29. Georget R, Domergue R, Ferrière N et al (2000) Morpho-histological study of the different constituents of a banana (Musa AAA, cv. Grande naine) embryogenic cell suspension. Plant Cell Rep 19:748–754

    Article  Google Scholar 

  30. Widholm J (1972) The use of fluorescein diacetate and phenosafranine for determining viability of culture plant cells. Stain Technol 47:189–194

    Article  CAS  Google Scholar 

  31. Escobedo-Gracia RM, Enríquez-Valencia AJ, Youssef M et al (2016) Chapter 21 somatic embryogenesis in Banana, Musa ssp. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-33705-0_21

    Chapter  Google Scholar 

  32. Teisson C, Alvard D (1995) A new concept of plant in vitro cultivation liquid medium: temporary immersion. In: Terzi M, Cella R, Falavigna A (eds) Current issues in plant molecular and cellular biology. Kluwer Academic Publishers, Alphen aan den Rijn, pp 105–109

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency through their Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, for the fund support (CUB 15503) and thank profusely Dr. Nicolas Roux, Dr. Brad Till, and Dr. Chikelu Mba for their valuable suggestions and help, to technicians Nery Montano and Damicela Reinaldo for their significant contribution to the described protocols on this paper. Special thanks to MSc Geisy Díaz for her contribution in the translation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

López, J., Rayas, A., Medero, V., Santos, A., Basail, M., Beovides, Y. (2022). Somatic Embryogenesis in Banana (Musa spp.). In: Ramírez-Mosqueda, M.A. (eds) Somatic Embryogenesis. Methods in Molecular Biology, vol 2527. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2485-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2485-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2484-5

  • Online ISBN: 978-1-0716-2485-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics