Skip to main content

Non-invasive In Vivo Tracking of Mammalian Cells Stably Expressing Firefly Luciferase

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2524))

  • 917 Accesses

Abstract

Firefly luciferase (FLuc)-based in vivo optical imaging technology exerts the non-invasive monitoring of transplanted cells in experimental animal models. This chapter introduces an established cell line that stably expresses a retrovirus-delivered FLuc protein gene. The stable expression does not affect the cell morphology, proliferation, migration, and invasion abilities of the parental cells. After implantation, the bioluminescence signal of FLuc cells truly reflects cell proliferation and survival in vivo, which can provide a reliable method for dynamic detection of in vivo cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Progatzky F, Dallman MJ, Lo Celso C (2013) From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 3:20130001. https://doi.org/10.1098/rsfs.2013.0001

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wu C, Xu B, Li X, Ma W, Zhang P, Chen X, Wu J (2017) Tracing and characterizing the development of transplanted female germline stem cells in vivo. Mol Ther 25:1408–1419. https://doi.org/10.1016/j.ymthe.2017.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farrelly O, Kuri P, Rompolas P (2019) In vivo genetic alteration and lineage tracing of single stem cells by live imaging. Methods Mol Biol 1879:1–14. https://doi.org/10.1007/7651_2018_172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang XJ, Li X, Ren Y (2016) Radionuclide imaging and treatment of thyroid cancer. Front Biosci (Landmark Ed) 21:1187–1193. https://doi.org/10.2741/4449

    Article  CAS  Google Scholar 

  5. Ding N, Sano K, Kanazaki K, Shimizu Y, Watanabe H, Namita T, Shiina T, Ono M, Saji H (2020) Sensitive photoacoustic/magnetic resonance dual imaging probe for detection of malignant tumors. J Pharm Sci 109:3153–3159. https://doi.org/10.1016/j.xphs.2020.07.010

    Article  CAS  PubMed  Google Scholar 

  6. Pirovano G, Roberts S, Kossatz S, Reiner T (2020) Optical imaging modalities: principles and applications in preclinical research and clinical settings. J Nucl Med 61:1419–1427. https://doi.org/10.2967/jnumed.119.238279

    Article  CAS  PubMed  Google Scholar 

  7. Kircher MF, Gambhir SS, Grimm J (2011) Noninvasive cell‑tracking methods. Nat Rev Clin Oncol 8:677–688. https://doi.org/10.1038/nrclinonc.2011.141

    Article  CAS  PubMed  Google Scholar 

  8. Iafrate M, Fruhwirth GO (2020) How non-invasive in vivo cell tracking supports the development and translation of cancer immunotherapies. Front Physiol 11:154. https://doi.org/10.3389/fphys.2020.00154

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim JE, Kalimuthu S, Ahn BC (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 49:3–10. https://doi.org/10.1007/s13139-014-0309-x

    Article  CAS  PubMed  Google Scholar 

  10. Park JJ, Lee TS, Son JJ, Chun KS, Song IH, Park YS, Kim KI, Lee YJ, Kang JH (2012) Comparison of cell-labeling methods with 124I-FIAU and 64Cu-PTSM for cell tracking using chronic myelogenous leukemia cells expressing HSV1-tk and firefly luciferase. Cancer Biother Radiopharm 27:719–728. https://doi.org/10.1089/cbr.2012.1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han D, Wu JC (2020) Using bioengineered bioluminescence to track stem cell transplantation in vivo. Methods Mol Biol 2126:1–11. https://doi.org/10.1007/978-1-0716-0364-2_1

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Liu M, Cui J, Yang K, Zhao L, Gong M, Wang Y, He Y, He T, Bi Y (2018) Hepa1-6-FLuc cell line with the stable expression of firefly luciferase retains its primary properties with promising bioluminescence imaging ability. Oncol Lett 15:6203–6210. https://doi.org/10.3892/ol.2018.8132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bi, Y., Zhang, N., He, Y. (2022). Non-invasive In Vivo Tracking of Mammalian Cells Stably Expressing Firefly Luciferase. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2524. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2453-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2453-1_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2452-4

  • Online ISBN: 978-1-0716-2453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics