Skip to main content

Gene Gun-Mediated Transient Gene Expression for Functional Studies in Plant Immunity

  • Protocol
  • First Online:
Effector-Triggered Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2523))

Abstract

One major threat to plant cultivation are fungal pathogens, which can cause substantial yield losses in agriculture. As an example, cereal powdery mildew fungi such as the barley (Hordeum vulgare) pathogen, Blumeria graminis f. sp. hordei (Bgh), are among the ten most relevant fungal plant pathogens in molecular plant pathology and can lead to yield losses of up to 30%. Plant Mildew resistance Locus O (MLO) genes are required for successful colonization of plants by powdery mildew fungi. Accordingly, loss-of-function mlo mutants confer durable resistance against powdery mildew fungi in many plant species. In the case of barley, mlo-based resistance has been used for more than 40 years in agriculture without powdery mildew fungi effectively overcoming this kind of immunity. However, the molecular basis of mlo resistance and function(s) of the transmembrane Mlo protein(s) are still incompletely understood. The generation of transgenic barley plants to study the plant immune response and the involvement of Mlo therein is time-consuming and challenging. Therefore, transient gene expression via gene gun-mediated particle bombardment became a popular, easy, and efficient tool to investigate different aspects of plant defense responses in barley. Since Bgh fails to penetrate leaf epidermal cells of mlo mutants, single-cell complementation upon biolistic transformation resulting in (over-)expression of Mlo can be used to characterize the Mlo protein functionally in vivo. In this chapter, we describe in detail the gene gun-mediated transient expression of Mlo in barley leaf epidermal cells followed by powdery mildew inoculation and the subsequent microscopic evaluation. However, gene gun-mediated transient gene expression may be also used to address other research questions or to transform the epidermal tissues of other plant organs and/or species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol Evol 8(3):878–895

    Article  Google Scholar 

  2. Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204(2):273–281

    Article  CAS  Google Scholar 

  3. Büschges R et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88(5):695–705

    Article  Google Scholar 

  4. Jørgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  5. Consonni C et al (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 38(6):716–720

    Article  CAS  Google Scholar 

  6. Kusch S, Panstruga R (2017) mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant-Microbe Interact 30(3):1–47

    Article  Google Scholar 

  7. Lyngkjær MF, Newton AC, Atzema JL, Baker SJ (2000) The barley mlo-gene: an important powdery mildew resistance source. Agronomie 20(7):745–755

    Article  Google Scholar 

  8. Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, Von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 247(49):34993–35004

    Article  Google Scholar 

  9. Kim MC, Panstruga R, Elliott C, Müller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416(6879):447–451

    Article  CAS  Google Scholar 

  10. Kim MC et al (2002) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. J Biol Chem 277(22):19304–19314

    Article  CAS  Google Scholar 

  11. Bednarek P et al (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323(5910):101–106

    Article  CAS  Google Scholar 

  12. Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, Loren V, van Themaat E, Panstruga R (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol 152(3):1544–1564

    Article  CAS  Google Scholar 

  13. Collins NC et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425(30):973–977

    Article  CAS  Google Scholar 

  14. Pajonk S, Kwon C, Clemens N, Panstruga R, Schulze-Lefert P (2008) Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J Biol Chem 283(40):26974–26984

    Article  CAS  Google Scholar 

  15. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci 102(8):3135–3140

    Article  CAS  Google Scholar 

  16. Kwon C et al (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451(7180):835–840

    Article  CAS  Google Scholar 

  17. Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R (2010) Combined bimolecular fluorescence complementation and förster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol 152(3):1135

    Article  CAS  Google Scholar 

  18. Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63(5):1791–1798

    Article  CAS  Google Scholar 

  19. Lee W-S, Hammond-Kosack KE, Kanyuka K (2015) In planta transient expression systems for monocots. Recent Adv Gene Expr Enabling Technol Crop Plants:391–422

    Google Scholar 

  20. Nelson AJ, Bushnell WR (1997) Transient expression of anthocyanin genes in barley epidermal cells: potential for use in evaluation of disease. Transgenic Res 244:233–244

    Article  Google Scholar 

  21. Hückelhoven R (2014) The effective papilla hypothesis. New Phytol 204(3):438–440

    Article  Google Scholar 

  22. Stolzenburg MC, Aist JR, Israel HW (1984) The role of papillae in resistance to powdery mildew conditioned by the ml-o gene in barley. I correlative evidence. Physiol Plant Pathol 25(3):337–346

    Article  Google Scholar 

  23. Both M, Csukai M, Stumpf MPH, Spanu PD (2005) Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell 17(7):2107–2122

    Article  CAS  Google Scholar 

  24. Panstruga R (2004) A golden shot: how ballistic single cell transformation boosts the molecular analysis of cereal – mildew interactions. Mol Plant Microbe Interact 5:141–148

    CAS  Google Scholar 

  25. Shirasu K, Nielsen K, Piffanelli P, Oliver R, Schulze-Lefert P (1999) Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. Plant J 17(3):293–299

    Article  CAS  Google Scholar 

  26. Acevedo-Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond-Kosack K, Phillips AL, Panstruga R (2017) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J 15(3):367–378

    Article  CAS  Google Scholar 

  27. Reinstädler A, Müller J, Czembor JH, Piffanelli P, Panstruga R (2010) Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Pant Biol 10:31

    Article  Google Scholar 

  28. Elliott C, Müller J, Miklis M, Bhat RA, Schulze-Lefert P, Panstruga R (2005) Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem J 385(Pt 1):243–254

    Article  CAS  Google Scholar 

  29. Elliott C, Zhou F, Spielmeyer W, Panstruga R, Schulze-Lefert P (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Mol Plant-Microbe Interact 15(10):1069–1077

    Article  CAS  Google Scholar 

  30. Ge X, Deng W, Lee ZZ, Lopez-Ruiz FJ, Schweizer P, Ellwood SR (2016) Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace. Sci Rep 6:29558

    Article  CAS  Google Scholar 

  31. Panstruga R, Molina-Cano JL, Reinstädler A, Müller J (2005) Molecular characterization of mlo mutants in North American two- and six-rowed malting barley cultivars. Mol Plant Pathol 6(3):315–320

    Article  CAS  Google Scholar 

  32. Hückelhoven R, Dechert C, Kogel KH (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci 100(9):5555–5560

    Article  Google Scholar 

  33. Seeholzer S et al (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant-Microbe Interact 23(4):497–509

    Article  CAS  Google Scholar 

  34. Pliego C et al (2013) Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant-Microbe Interact 26(6):633–642

    Article  CAS  Google Scholar 

  35. Panstruga R, Kim MC, Cho MJ, Schulze-Lefert P (2003) Testing the efficiency of dsRNAi constructs in vivo: a transient expression assay based on two fluorescent proteins. Mol Biol Rep 30(3):135–140

    Article  CAS  Google Scholar 

  36. Nowara D, Schweizer P, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J (2010) HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22(9):3130–3141

    Article  CAS  Google Scholar 

  37. Wahara M, Inoue C, Kohguchi T, Sugai K, Kobayashi K, Nishiguchi M, Yamaoka N, Yaeno T (2017) Improved method for in situ biolistic transformation to analyze barley–powdery mildew interactions. J Gen Plant Pathol 83(3):140–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Panstruga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leissing, F., Reinstädler, A., Thieron, H., Panstruga, R. (2022). Gene Gun-Mediated Transient Gene Expression for Functional Studies in Plant Immunity. In: Kufer, T.A., Kaparakis-Liaskos, M. (eds) Effector-Triggered Immunity. Methods in Molecular Biology, vol 2523. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2449-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2449-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2448-7

  • Online ISBN: 978-1-0716-2449-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics