Skip to main content

Methods for Markerless Gene Deletion and Plasmid-Based Expression in Sulfolobus acidocaldarius

  • Protocol
  • First Online:
Archaea

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2522))

Abstract

A well-functioning genetic system, which is important for studying gene functions in vivo, requires a transformation method, a vector system and a selection system. Sulfolobus acidocaldarius is a crenarchaeal model organism that grows optimally at 75 °C and a pH of 3. These extreme growth conditions cause some difficulties in developing a genetic system. With continuous efforts, versatile genetic tools have been developed for different species from the order of Sulfolobales. In this chapter, we describe the methods for the available genetic tools in S. acidocaldarius including a (1) transformation method, (2) pop in/pop out strategy to generate markerless deletion mutants and (3) a plasmid-based expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF (2021) The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 45(4):fuaa063

    Article  CAS  Google Scholar 

  2. Albers S-V, Driessen AJM (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:145–149

    Article  CAS  Google Scholar 

  3. Kurosawa N, Grogan DW (2005) Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS Microbiol Lett 253:141–149

    Article  CAS  Google Scholar 

  4. Berkner S, Grogan D, Albers S-V, Lipps G (2007) Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-) archaea. Nucleic Acids Res 35:e88

    Article  Google Scholar 

  5. Prangishvili D, Stedman K, Zillig W (2001) Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol 9:39–43

    Article  CAS  Google Scholar 

  6. Snyder JC, Stedman K, Rice G, Wiedenheft B, Spuhler J, Young MJ (2003) Viruses of hyperthermophilic archaea. Res Microbiol 154:474–482

    Article  CAS  Google Scholar 

  7. Prangishvili D, Garrett RA (2004) Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32:204–208

    Article  CAS  Google Scholar 

  8. Lipps G (2006) Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus. Extremophiles 10:17–28

    Article  Google Scholar 

  9. Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13:735

    Article  CAS  Google Scholar 

  10. Keeling PJ, Klenk H-P, Singh RK, Feeley O, Schleper C, Zillig W, Doolittle WF, Sensen CW (1996) Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35:141–144

    Article  CAS  Google Scholar 

  11. Keeling PJ, Klenk H-P, Singh RK, Schenk ME, Sensen CW, Zillig W, Doolittle WF (1998) Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. Extremophiles 2:391–393

    Article  CAS  Google Scholar 

  12. Li Y, Pan S, Zhang Y, Ren M, Feng M, Peng N, Chen L, Liang YX, She Q (2016) Harnessing type I and type III CRISPR-Cas systems for genome editing. Nucleic Acids Res 44:e34–e34

    Article  Google Scholar 

  13. Zebec Z, Manica A, Zhang J, White MF, Schleper C (2014) CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 42:5280–5288

    Article  CAS  Google Scholar 

  14. Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers S-V (2012) Versatile genetic tool box for the Crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3:214

    Article  Google Scholar 

  15. Zhang C, Cooper TE, Krause DJ, Whitaker RJ (2013) Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy. Appl Environ Microbiol 79:5539–5549

    Article  CAS  Google Scholar 

  16. Van Der Kolk N, Wagner A, Wagner M, Waßmer B, Siebers B, Albers S-V (2020) Identification of XylR, the activator of arabinose/xylose inducible regulon in Sulfolobus acidocaldarius and its application for homologous protein expression. Front Microbiol 11:1066

    Article  Google Scholar 

  17. Moll R, Schäfer G (1988) Chemiosmotic H+ cycling across the plasma membrane of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett 232:359–363. https://doi.org/10.1016/0014-5793(88)80769-5

    Article  CAS  Google Scholar 

  18. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  Google Scholar 

  19. Prangishvili DA, Vashakidze RP, Chelidze MG, Gabriadze IY (1985) A restriction endonuclease SuaI from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett 192:57–60. https://doi.org/10.1016/0014-5793(85)80042-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all the bachelor’s, master’s, and PhD students; technicians; and postdoctoral researchers who helped developing and optimizing the genetic system for Sulfolobus acidocaldarius throughout the years, especially Michaela Wagner and Alexander Wagner. MvW received support from the Momentum grant 94933 from the Volkswagen Foundation. XY was funded by the Life? Grant Az 96727 from the Volkswagen Foundation, and AR received support from the HotAcidFactory grant 031B0848C from the BMBF (Federal Ministry of Education and Research).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonja-Verena Albers or Marleen van Wolferen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, X., Recalde, A., Albers, SV., van Wolferen, M. (2022). Methods for Markerless Gene Deletion and Plasmid-Based Expression in Sulfolobus acidocaldarius. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, vol 2522. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2445-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2445-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2444-9

  • Online ISBN: 978-1-0716-2445-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics