Skip to main content

Transposon Insertion Mutagenesis in Hyperthermophilic Crenarchaeon Sulfolobus islandicus

  • Protocol
  • First Online:
Archaea

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2522))

Abstract

Transposon insertion mutagenesis is a forward genetic approach that has been widely utilized for genetic characterization of bacteria and single-celled eukaryotes, and its applications are being rapidly expanded into a few archaeal model organisms for gene function analysis. Previously, we developed a Tn5-based in vivo transposon insertion mutagenesis system in the hyperthermophilic crenarchaeon S. islandicucs M.16.4 and defined the essential gene set under laboratory growth conditions. In this chapter, we will mainly focus on presenting details regarding the generation of a near-saturating transposon insertion mutant library in this crenarchaeal model. We envision that the traditional transposon-based forward mutagenesis screening paired with next generation sequencing will greatly speed up the exploration of archaeal genomic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woods WG, Ngui K, Dyall-Smith ML (1999) An improved transposon for the halophilic archaeon Haloarcula hispanica. J Bacteriol 181(22):7140–7142. https://doi.org/10.1128/JB.181.22.7140-7142.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dyall-Smith ML, Doolittle WF (1994) Construction of composite transposons for halophilic Archaea. Can J Microbiol 40(11):922–929. https://doi.org/10.1139/m94-148

    Article  CAS  PubMed  Google Scholar 

  3. Kiljunen S, Pajunen MI, Dilks K, Storf S, Pohlschroder M, Savilahti H (2014) Generation of comprehensive transposon insertion mutant library for the model archaeon, Haloferax volcanii, and its use for gene discovery. BMC Biol 12:103. https://doi.org/10.1186/s12915-014-0103-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang JK, Pritchett MA, Lampe DJ, Robertson HM, Metcalf WW (2000) In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proc Natl Acad Sci U S A 97(17):9665–9670. https://doi.org/10.1073/pnas.160272597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarmiento F, Mrazek J, Whitman WB (2013) Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 110(12):4726–4731. https://doi.org/10.1073/pnas.1220225110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rother M, Sattler C, Stock T (2011) Studying gene regulation in methanogenic archaea. Methods Enzymol 494:91–110. https://doi.org/10.1016/B978-0-12-385112-3.00005-6

    Article  CAS  PubMed  Google Scholar 

  7. Porat I, Whitman WB (2009) Tryptophan auxotrophs were obtained by random transposon insertions in the Methanococcus maripaludis tryptophan operon. FEMS Microbiol Lett 297(2):250–254. https://doi.org/10.1111/j.1574-6968.2009.01689.x

    Article  CAS  PubMed  Google Scholar 

  8. Guschinskaya N, Brunel R, Tourte M, Lipscomb GL, Adams MWW, Oger P, Charpentier X (2016) Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation. Sci Rep 6:36711. https://doi.org/10.1038/srep36711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orita I, Futatsuishi R, Adachi K, Ohira T, Kaneko A, Minowa K, Suzuki M, Tamura T, Nakamura S, Imanaka T, Suzuki T, Fukui T (2019) Random mutagenesis of a hyperthermophilic archaeon identified tRNA modifications associated with cellular hyperthermotolerance. Nucleic Acids Res 47(4):1964–1976. https://doi.org/10.1093/nar/gky1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang C, Phillips APR, Wipfler RL, Olsen GJ, Whitaker RJ (2018) The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat Commun 9(1):4908. https://doi.org/10.1038/s41467-018-07379-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Collins M, Afolayan S, Igiraneza AB, Schiller H, Krespan E, Beiting DP, Dyall-Smith M, Pfeiffer F, Pohlschroder M (2020) Mutations affecting HVO_1357 or HVO_2248 cause Hypermotility in Haloferax volcanii, suggesting roles in motility regulation. Genes (Basel) 12(1):58. https://doi.org/10.3390/genes12010058

    Article  CAS  Google Scholar 

  12. Legerme G, Yang E, Esquivel RN, Kiljunen S, Savilahti H, Pohlschroder M (2016) Screening of a Haloferax volcanii transposon library reveals novel motility and adhesion mutants. Life (Basel) 6(4):41. https://doi.org/10.3390/life6040041

    Article  CAS  Google Scholar 

  13. Forterre P (2002) A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet 18(5):236–237. https://doi.org/10.1016/s0168-9525(02)02650-1

    Article  CAS  PubMed  Google Scholar 

  14. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6(10):767–772. https://doi.org/10.1038/nmeth.1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T (2020) A decade of advances in transposon-insertion sequencing. Nat Rev Genet 21(9):526–540. https://doi.org/10.1038/s41576-020-0244-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579. https://doi.org/10.1073/pnas.87.12.4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98(14):7835–7840. https://doi.org/10.1073/pnas.141222098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang C, Whitaker RJ (2018) Microhomology-mediated high-throughput gene inactivation strategy for the Hyperthermophilic Crenarchaeon Sulfolobus islandicus. Appl Environ Microbiol 84(1):e02167-17. https://doi.org/10.1128/AEM.02167-17

    Article  PubMed  Google Scholar 

  19. Das S, Noe JC, Paik S, Kitten T (2005) An improved arbitrary primed PCR method for rapid characterization of transposon insertion sites. J Microbiol Methods 63(1):89–94. https://doi.org/10.1016/j.mimet.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  20. Saavedra JT, Schwartzman JA, Gilmore MS (2017) Mapping transposon insertions in bacterial genomes by arbitrarily primed PCR. Curr Protoc Mol Biol 118:15 15 11–15 15 15. https://doi.org/10.1002/cpmb.38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.Z. and R.J.W are supported by a grant from US National Science Foundation (DEB: 1355171). We thank Dr. Ahmed M. Abdel-Hamid, John R. Schneider, Ruben L. Sanchez-Nieves, Yuan Li, and Rebecca L. Wipfler for carefully reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, C., Whitaker, R.J. (2022). Transposon Insertion Mutagenesis in Hyperthermophilic Crenarchaeon Sulfolobus islandicus. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, vol 2522. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2445-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2445-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2444-9

  • Online ISBN: 978-1-0716-2445-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics