Skip to main content

Analysis for Sister Chromatid Exchange

  • Protocol
  • First Online:
Chromosome Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2519))

Abstract

Sister chromatid exchange (SCE) is the exchange event of genetic material between two identical sister chromatid. Elevation of SCE frequency is considered as a result of replication stress from genetic defects, ROS stress, and genomic damages. SCE staining needs extra processes compared to regular Giemsa staining. Usually two rounds of cell cycle progress are required to observe SCE under microscope. SCE can be visualized with the fluorescence plus Giemsa (FPG) staining method or fluorescence staining methods with immunocytochemistry to BrdU or Click reaction to EdU which provide more clear images of SCE. This chapter will provide the detailed method for the SCE staining and measurement for the traditional FPG staining, BrdU monoclonal antibody staining method, and newly developed EdU Click reaction staining method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor JH, Woods PS, Hughes WL (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled Thymidinee. Proc Natl Acad Sci U S A 43(1):122–128

    Article  CAS  Google Scholar 

  2. Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 251(5471):156–158

    Article  CAS  Google Scholar 

  3. Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci U S A 70(12):3395–3399

    Article  CAS  Google Scholar 

  4. Raza A, Kempski M, Preisler HD, Block AW (1985) A permanent method of detecting Sce by immunofluorescence using monoclonal anti-Brdu antibodies. Cancer Genet Cytogen 15(1–2):187–189

    CAS  Google Scholar 

  5. Sunada S, Haskins JS, Kato TA (2019) Sister chromatid exchange as a genotoxic stress marker. Methods Mol Biol 1984:61–68. https://doi.org/10.1007/978-1-4939-9432-8_7

    Article  CAS  PubMed  Google Scholar 

  6. Haskins JS, Su C, Maeda J, Walsh KD, Haskins AH, Allum AJ, Froning CE, Kato TA (2020) Evaluating the genotoxic and cytotoxic effects of thymidine analogs, 5-Ethynyl-2 ‘-Deoxyuridine and 5-Bromo-2 ‘-Deoxyurdine to mammalian cells. Inter J Molecul Sci 21(18):ARTN 6631. https://doi.org/10.3390/ijms21186631

    Article  CAS  Google Scholar 

  7. Lambert B, Hansson K, Lindsten J, Sten M, Werelius B (1976) Bromodeoxyuridine-induced sister chromatid exchanges in human lymphocytes. Hereditas 83(2):163–174

    Article  CAS  Google Scholar 

  8. Pinkel D, Thompson LH, Gray JW, Vanderlaan M (1985) Measurement of sister chromatid exchanges at very low bromodeoxyuridine substitution levels using a monoclonal antibody in Chinese hamster ovary cells. Cancer Res 45(11 Pt 2):5795–5798

    CAS  PubMed  Google Scholar 

  9. Heartlein MW, O’Neill JP, Preston RJ (1983) SCE induction is proportional to substitution in DNA for thymidine by CldU and BrdU. Mutat Res 107(1):103–109

    Article  CAS  Google Scholar 

  10. DuFrain RJ, McFee AF, Linkous S, Jennings CJ, Lowe KW (1984) In vivo SCE analysis using bromodeoxyuridine, iododeoxyuridine, and chlorodeoxyuridine. Mutat Res 139(2):57–60

    Article  CAS  Google Scholar 

  11. Wilson DM III, Thompson LH (2007) Molecular mechanisms of sister-chromatid exchange. MutatRes 616(1–2):11–23

    CAS  Google Scholar 

  12. Hori T (1981) High-incidence of sister chromatid exchanges and chromatid interchanges in the conditions of lowered activity of poly(Adp-ribose) polymerase. Biochem Bioph Res Co 102(1):38–45. https://doi.org/10.1016/0006-291x(81)91485-6

    Article  CAS  Google Scholar 

  13. Chaganti RS, Schonberg S, German J (1974) Manifold increase in sister chromatid exchanges in blooms syndrome lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 71(11):4508–4512. https://doi.org/10.1073/pnas.71.11.4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thompson LH, Brookman KW, Dillehay LE, Carrano AV, Mazrimas JA, Mooney CL, Minkler JL (1982) A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. MutatRes 95(2–3):427–440

    CAS  Google Scholar 

  15. Tobey RA, Ley KD (1970) Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of stable, reversible G1-arrested populations in suspension culture. JCell Biol 46(1):151–157

    Article  CAS  Google Scholar 

  16. Nagasawa H, Lin YF, Kato TA, Brogan JR, Shih HY, Kurimasa A, Bedford JS, Chen BP, Little JB (2017) Coordination of the Ser2056 and Thr2609 Clusters of DNA-PKcs in Regulating Gamma Rays and Extremely Low Fluencies of Alpha-Particle Irradiation to G0/G1 Phase Cells. Radiat Res 187(2):259–267. https://doi.org/10.1667/RR14679.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujii Y, Genet MD, Roybal EJ, Kubota N, Okayasu R, Miyagawa K, Fujimori A, Kato TA (2013) Comparison of the bromodeoxyuridine-mediated sensitization effects between low-LET and high-LET ionizing radiation on DNA double-strand breaks. Oncol Rep 29(6):2133–2139. https://doi.org/10.3892/or.2013.2354

    Article  CAS  PubMed  Google Scholar 

  18. Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH (2005) Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amst) 4(7):782–792

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamitsu A. Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kato, T.A. (2023). Analysis for Sister Chromatid Exchange. In: Gotoh, E. (eds) Chromosome Analysis. Methods in Molecular Biology, vol 2519. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2433-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2433-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2432-6

  • Online ISBN: 978-1-0716-2433-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics