Skip to main content

RNA Structure Prediction, Analysis, and Design: An Introduction to Web-Based Tools

  • Protocol
  • First Online:
Riboregulator Design and Analysis

Abstract

Understanding RNA structure has become critical in the study of RNA in their roles as mediators of biological processes. To aid in these studies, computational algorithms that utilize thermodynamics have been developed to predict RNA secondary structure. Due to the importance of intermolecular interactions, the algorithms have been expanded to determine and predict RNA-RNA hybridization. This chapter discusses popular webservers with the tools for RNA secondary structure prediction, RNA-RNA hybridization, and design. We address key features that distinguish common-functioning programs and their purposes for the interests of the user. Ultimately, we hope this review elucidates web-based tools researchers may take advantage of in their investigations of RNA structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tanner NK (1999) Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol Rev 23:257–275. https://doi.org/10.1111/j.1574-6976.1999.tb00399.x

    Article  CAS  PubMed  Google Scholar 

  2. Waters LS, Storz G (2009) Regulatory RNAs in Bacteria. Cell 136:615–628. https://doi.org/10.1016/j.cell.2009.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chappell J, Takahashi MK, Meyer S et al (2013) The centrality of RNA for engineering gene expression. Biotechnol J 8:1379–1395. https://doi.org/10.1002/biot.201300018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  Google Scholar 

  5. Serra MJ, Turner DH (1995) Predicting thermodynamic properties of RNA. Methods Enzymol 259:242–261. https://doi.org/10.1016/0076-6879(95)59047-1

    Article  CAS  PubMed  Google Scholar 

  6. Xia T, SantaLucia J, Burkard ME et al (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson – Crick base pairs. Biochemistry 37:14719–14735. https://doi.org/10.1021/bi9809425

    Article  CAS  PubMed  Google Scholar 

  7. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940. https://doi.org/10.1006/jmbi.1999.2700

    Article  CAS  PubMed  Google Scholar 

  8. Mathews DH, Turner DH (2002) Experimentally derived nearest-neighbor parameters for the stability of RNA three- and four-way multibranch loops. Biochemistry 41:869–880. https://doi.org/10.1021/bi011441d

    Article  CAS  PubMed  Google Scholar 

  9. Mathews DH, Disney MD, Childs JL et al (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292. https://doi.org/10.1073/pnas.0401799101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turner DH, Mathews DH (2009) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38. https://doi.org/10.1093/nar/gkp892

  11. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinf 11:129. https://doi.org/10.1186/1471-2105-11-129

    Article  CAS  Google Scholar 

  12. Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41. https://doi.org/10.1093/nar/gkt290

  13. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gruber AR, Lorenz R, Bernhart SH et al (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74. https://doi.org/10.1093/nar/gkn188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173. https://doi.org/10.1002/jcc.21596

    Article  CAS  PubMed  Google Scholar 

  16. Lu ZJ, Gloor JW, Mathews DH (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15:1805–1813. https://doi.org/10.1261/rna.1643609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31:7280–7301. https://doi.org/10.1093/nar/gkg938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harmanci AO, Sharma G, Mathews DH (2009) Stochastic sampling of the RNA structural alignment space. Nucleic Acids Res 37:4063–4075. https://doi.org/10.1093/nar/gkp276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peselis A, Serganov A (2014) Structure and function of pseudoknots involved in gene expression control. Wiley Interdiscip Rev RNA 5:803–822. https://doi.org/10.1002/wrna.1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24:1664–1677. https://doi.org/10.1002/jcc.10296

    Article  CAS  PubMed  Google Scholar 

  21. Dirks RM, Pierce NA (2004) An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J Comput Chem 25:1295–1304. https://doi.org/10.1002/jcc.20057

    Article  CAS  PubMed  Google Scholar 

  22. Ruan J, Stormo GD, Zhang W (2004) An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20:58–66. https://doi.org/10.1093/bioinformatics/btg373

    Article  CAS  PubMed  Google Scholar 

  23. Reeder J, Giegerich R (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinf 5:1–12. https://doi.org/10.1186/1471-2105-5-104

    Article  CAS  Google Scholar 

  24. Ren J, Rastegari B, Condon A, Hoos HH (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11:1494–1504. https://doi.org/10.1261/rna.7284905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bellaousov S, Mathews DH (2010) ProbKnot: fast prediction of RNA secondary structure including pseudoknots. RNA 16:1870–1880. https://doi.org/10.1261/rna.2125310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sato K, Kato Y, Hamada M et al (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27:85–93. https://doi.org/10.1093/bioinformatics/btr215

    Article  CAS  Google Scholar 

  27. Andronescu MS, Pop C, Condon AE (2010) Improved free energy parameters for RNA pseudoknotted secondary structure prediction. RNA 16:26–42. https://doi.org/10.1261/rna.1689910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Liu Y, Zhong X et al (2019) DMFold: a novel method to predict RNA secondary structure with pseudoknots based on deep learning and improved base pair maximization principle. Front Genet 10:143. https://doi.org/10.3389/fgene.2019.00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mao K, Wang J, Xiao Y (2020) Prediction of RNA secondary structure with pseudoknots using coupled deep neural networks. Biophys Rep 6:146–154. https://doi.org/10.1007/s41048-020-00114-x

    Article  CAS  Google Scholar 

  30. Knapp G (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol 180:192–212. https://doi.org/10.1016/0076-6879(89)80102-8

    Article  CAS  PubMed  Google Scholar 

  31. Strobel EJ, Yu AM, Lucks JB (2018) High-throughput determination of RNA structures. Nat Rev Genet 19:615–634. https://doi.org/10.1038/s41576-018-0034-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by Selective 2′-Hydroxyl Acylation and Primer Extension (SHAPE). J Am Chem Soc 127:4223–4231. https://doi.org/10.1021/ja043822v

    Article  CAS  PubMed  Google Scholar 

  33. Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J Am Chem Soc 129:4144–4145. https://doi.org/10.1021/ja0704028

    Article  CAS  PubMed  Google Scholar 

  34. Lucks JB, Mortimer SA, Trapnell C et al (2011) Multiplexed RNA structure characterization with selective 2’-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068. https://doi.org/10.1073/pnas.1106501108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci 106:97–102. https://doi.org/10.1073/pnas.0806929106

    Article  PubMed  Google Scholar 

  36. Zarringhalam K, Meyer MM, Dotu I et al (2012) Integrating chemical footprinting data into RNA secondary structure prediction. PLoS One 7:45160. https://doi.org/10.1371/journal.pone.0045160

    Article  CAS  Google Scholar 

  37. Washietl S, Hofacker IL, Stadler PF, Kellis M (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res 40:4261–4272. https://doi.org/10.1093/nar/gks009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lorenz R, Luntzer D, Hofacker IL et al (2016) SHAPE directed RNA folding. Bioinformatics 32:145–147. https://doi.org/10.1093/bioinformatics/btv523

    Article  CAS  PubMed  Google Scholar 

  39. Steffen P, Voß B, Rehmsmeier M et al (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22:500–503. https://doi.org/10.1093/bioinformatics/btk010

    Article  CAS  PubMed  Google Scholar 

  40. Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317:191–203. https://doi.org/10.1006/jmbi.2001.5351

    Article  CAS  PubMed  Google Scholar 

  41. Xu Z, Mathews DH (2011) Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences. Bioinformatics 27:626–632. https://doi.org/10.1093/bioinformatics/btq726

    Article  CAS  PubMed  Google Scholar 

  42. Will S, Reiche K, Hofacker IL et al (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3:680–691. https://doi.org/10.1371/journal.pcbi.0030065

    Article  CAS  Google Scholar 

  43. Smith C, Heyne S, Richter AS et al (2010) Freiburg RNA tools: a web server integrating IntaRNA, ExpaRNA and LocARNA. Nucleic Acids Res 38:W373–W377. https://doi.org/10.1093/nar/gkq316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harmanci AO, Sharma G, Mathews DH (2008) PARTS: probabilistic alignment for RNA joinT secondary structure prediction. Nucleic Acids Res 36:2406–2417. https://doi.org/10.1093/nar/gkn043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bernhart SH, Hofacker IL, Will S et al (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinf 9:1–13. https://doi.org/10.1186/1471-2105-9-474

    Article  CAS  Google Scholar 

  46. Harmanci AO, Sharma G, Mathews DH (2011) TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences. BMC Bioinf 12:1–22. https://doi.org/10.1186/1471-2105-12-108

    Article  CAS  Google Scholar 

  47. Seetin MG, Mathews DH (2012) RNA structure prediction: an overview of methods. Methods Mol Biol 905:99–122. https://doi.org/10.1007/978-1-61779-949-5_8

    Article  CAS  PubMed  Google Scholar 

  48. Puton T, Kozlowski LP, Rother KM, Bujnicki JM (2013) CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res 41:4307–4323. https://doi.org/10.1093/nar/gkt101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31. https://doi.org/10.1007/978-1-60327-429-6_1

    Article  CAS  PubMed  Google Scholar 

  50. Bernhart SH, Tafer H, Mückstein U et al (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1:1–10. https://doi.org/10.1186/1748-7188-1-3

    Article  CAS  Google Scholar 

  51. Mückstein U, Tafer H, Hackermüller J et al (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182. https://doi.org/10.1093/bioinformatics/btl024

    Article  CAS  PubMed  Google Scholar 

  52. Umu SU, Gardner PP (2017) A comprehensive benchmark of RNA-RNA interaction prediction tools for all domains of life. Bioinformatics 33:988–996. https://doi.org/10.1093/bioinformatics/btw728

    Article  CAS  PubMed  Google Scholar 

  53. Han H (2018) RNA interference to knock down gene expression. Methods Mol Biol 1706:293–302. https://doi.org/10.1007/978-1-4939-7471-9_16

    Article  CAS  PubMed  Google Scholar 

  54. Tafer H, Ameres SL, Obernosterer G et al (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26:578–583. https://doi.org/10.1038/nbt1404

    Article  CAS  PubMed  Google Scholar 

  55. Mathews DH, Burkard ME, Freier SM et al (1999) Predicting oligonucleotide affinity to nucleic acid targets. RNA 5:1458–1469. https://doi.org/10.1017/S1355838299991148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu ZJ, Mathews DH (2008) Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 36:640–647. https://doi.org/10.1093/nar/gkm920

    Article  CAS  PubMed  Google Scholar 

  57. Gottesman S, Storz G (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3. https://doi.org/10.1101/cshperspect.a003798

  58. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891. https://doi.org/10.1016/j.molcel.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eggenhofer F, Tafer H, Stadler PF, Hofacker IL (2011) RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res 39:W149–W154. https://doi.org/10.1093/nar/gkr467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663. https://doi.org/10.1093/bioinformatics/btn193

    Article  CAS  PubMed  Google Scholar 

  61. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856. https://doi.org/10.1093/bioinformatics/btn544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mann M, Wright PR, Backofen R (2017) IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res 45:W435–W439. https://doi.org/10.1093/nar/gkx279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wright PR, Richter AS, Papenfort K et al (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci U S A 110:E3487–E3496. https://doi.org/10.1073/pnas.1303248110

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wright PR, Georg J, Mann M et al (2014) CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res 42:119–123. https://doi.org/10.1093/nar/gku359

    Article  CAS  Google Scholar 

  65. Kery MB, Feldman M, Livny J, Tjaden B (2014) TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucleic Acids Res 42:W124–W129. https://doi.org/10.1093/nar/gku317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tjaden B, Goodwin SS, Opdyke JA et al (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34:2791–2802. https://doi.org/10.1093/nar/gkl356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tjaden B (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res 36:109–113. https://doi.org/10.1093/nar/gkn264

    Article  CAS  Google Scholar 

  68. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. https://doi.org/10.1093/nar/gkr1079

    Article  CAS  PubMed  Google Scholar 

  69. Bernhart SH, Hofacker IL, Stadler PF (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics 22:614–615. https://doi.org/10.1093/bioinformatics/btk014

    Article  CAS  PubMed  Google Scholar 

  70. Chappell J, Westbrook A, Verosloff M, Lucks JB (2017) Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nat Commun 8:1–12. https://doi.org/10.1038/s41467-017-01082-6

    Article  CAS  Google Scholar 

  71. Mutalik VK, Qi L, Guimaraes JC et al (2012) Rationally designed families of orthogonal RNA regulators of translation. Nat Chem Biol 8:447–454. https://doi.org/10.1038/nchembio.919

    Article  CAS  PubMed  Google Scholar 

  72. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159:925–939. https://doi.org/10.1016/j.cell.2014.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rodrigo G, Landrain TE, Jaramillo A (2012) De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci U S A 109:15271–15276. https://doi.org/10.1073/pnas.1203831109

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wachsmuth M, Findeiß S, Weissheimer N et al (2013) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41:2541–2551. https://doi.org/10.1093/nar/gks1330

    Article  CAS  PubMed  Google Scholar 

  75. Wu MJ, Andreasson JOL, Kladwang W et al (2019) Automated design of diverse stand-alone riboswitches. ACS Synth Biol 8:1838–1846. https://doi.org/10.1021/acssynbio.9b00142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Na D, Yoo SM, Chung H et al (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174. https://doi.org/10.1038/nbt.2461

    Article  CAS  PubMed  Google Scholar 

  77. Hoynes-O’Connor A, Moon TS (2016) Development of design rules for reliable antisense RNA behavior in E. coli. ACS Synth Biol 5:1441–1454. https://doi.org/10.1021/acssynbio.6b00036

    Article  CAS  PubMed  Google Scholar 

  78. Pardee K, Green AA, Ferrante T et al (2014) Paper-based synthetic gene networks. Cell 159:940–954. https://doi.org/10.1016/j.cell.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma D, Shen L, Wu K et al (2018) Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synth Biol 3. https://doi.org/10.1093/SYNBIO/YSY018

  80. Takahashi MK, Tan X, Dy AJ et al (2018) A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun 9:3347. https://doi.org/10.1038/s41467-018-05864-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong F, Ma D, Wu K et al (2020) Precise and programmable detection of mutations using ultraspecific riboregulators. Cell 180:1018–1032.e16. https://doi.org/10.1016/j.cell.2020.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hofacker IL, Fontana W, Stadler PF et al (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie Chem Mon 125:167–188. https://doi.org/10.1007/BF00818163

    Article  CAS  Google Scholar 

  83. Garcia-Martin JA, Clote P, Dotu I (2013) RNAiFOLD: a constraint programming algorithm for rna inverse folding and molecular design. J Bioinforma Comput Biol 11. https://doi.org/10.1142/S0219720013500017

  84. Busch A, Backofen R (2006) INFO-RNA-a fast approach to inverse RNA folding. Bioinformatics 22:1823–1831. https://doi.org/10.1093/bioinformatics/btl194

    Article  CAS  PubMed  Google Scholar 

  85. Churkin A, Retwitzer MD, Reinharz V et al (2018) Design of RNAs: comparing programs for inverse RNA folding. Brief Bioinform 19:350–358. https://doi.org/10.1093/bib/bbw120

    Article  CAS  PubMed  Google Scholar 

  86. Garcia-Martin JA, Dotu I, Clote P (2015) RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules. Nucleic Acids Res 43:W513–W521. https://doi.org/10.1093/nar/gkv460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nawrocki EP, Burge SW, Bateman A et al (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–D137. https://doi.org/10.1093/nar/gku1063

    Article  CAS  PubMed  Google Scholar 

  88. Kleinkauf R, Mann M, Backofen R (2015) AntaRNA: ant colony-based RNA sequence design. Bioinformatics 31:3114–3121. https://doi.org/10.1093/bioinformatics/btv319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kleinkauf R, Houwaart T, Backofen R, Mann M (2015) antaRNA – multi-objective inverse folding of pseudoknot RNA using ant-colony optimization. BMC Bioinf 16:389. https://doi.org/10.1186/s12859-015-0815-6

    Article  Google Scholar 

  90. Zadeh JN, Wolfe BR, Pierce NA (2011) Nucleic acid sequence design via efficient ensemble defect optimization. J Comput Chem 32:439–452. https://doi.org/10.1002/jcc.21633

    Article  CAS  PubMed  Google Scholar 

  91. Wolfe BR, Porubsky NJ, Zadeh JN et al (2017) Constrained multistate sequence design for nucleic acid reaction pathway engineering. J Am Chem Soc 139:3134–3144. https://doi.org/10.1021/jacs.6b12693

    Article  CAS  PubMed  Google Scholar 

  92. Sharma S, Ding F, Dokholyan NV (2008) IFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952. https://doi.org/10.1093/bioinformatics/btn328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Popenda M, Szachniuk M, Antczak M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:e112–e112. https://doi.org/10.1093/nar/gks339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55. https://doi.org/10.1038/nature06684

    Article  CAS  PubMed  Google Scholar 

  95. Singh J, Hanson J, Paliwal K, Zhou Y (2019) RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-019-13395-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.A.I.Z. and C.H.P. were supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number TL4GM118977. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa K. Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zambrano, R.A.I., Hernandez-Perez, C., Takahashi, M.K. (2022). RNA Structure Prediction, Analysis, and Design: An Introduction to Web-Based Tools. In: Chappell, J., Takahashi, M.K. (eds) Riboregulator Design and Analysis. Methods in Molecular Biology, vol 2518. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2421-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2421-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2420-3

  • Online ISBN: 978-1-0716-2421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics