Skip to main content

Detecting DNA Methylations in the Hyperthermoacidophilic Crenarchaeon Sulfolobus acidocaldarius Using SMRT Sequencing

  • Protocol
  • First Online:
Prokaryotic Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2516))

Abstract

DNA methylations are one of the most well-known epigenetic modifications along with histone modifications and noncoding RNAs. They are found at specific sites along the DNA in all domains of life, with 5-mC and 6-mA/4-mC being well-characterized in eukaryotes and bacteria respectively, and they have not only been described as contributing to the structure of the double helix itself but also as regulators of DNA-based processes such as replication, transcription, and recombination. Different methods have been developed to accurately identify and/or map methylated motifs to decipher the involvement of DNA methylations in regulatory networks that affect the cellular state.

Although DNA methylations have been detected along archaeal genomes, their involvement as regulators of DNA-based processes remains the least known. To highlight the importance of DNA methylations in the control of key cellular mechanisms and their dynamics in archaea cells, we have used single-molecule real-time (SMRT) sequencing. This sequencing technology allows the identification and direct mapping of the methylated motifs along the genome of an organism. In this chapter, we present a step-by-step protocol for detecting DNA methylations in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius using SMRT sequencing. This protocol can easily be adapted to other prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3:274–293. https://doi.org/10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  2. Sánchez-Romero MA, Casadesús J (2020) The bacterial epigenome. Nat Rev Microbiol 18:7–20. https://doi.org/10.1038/s41579-019-0286-2

    Article  CAS  PubMed  Google Scholar 

  3. Severin PMD, Zou X, Gaub HE, Schulten K (2011) Cytosine methylation alters DNA mechanical properties. Nucleic Acids Res 39:8740–8751. https://doi.org/10.1093/nar/gkr578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geahigan KB, Meints GA, Hatcher ME, Orban J, Drobny GP (2000) The dynamic impact of CpG methylation in DNA. Biochemistry 39:4939–4946. https://doi.org/10.1021/bi9917636

    Article  CAS  PubMed  Google Scholar 

  5. Derreumaux S, Chaoui M, Tevanian G, Fermandjian S (2001) Impact of CpG methylation on structure, dynamics and solvation of cAMP DNA responsive element. Nucleic Acids Res 29:2314–2326. https://doi.org/10.1093/nar/29.11.2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diekmann S (1987) DNA methylation can enhance or induce DNA curvature. EMBO J 6:4213–4217. https://doi.org/10.1002/j.1460-2075.1987.tb02769.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polaczek P, Kwan K, Campbell JL (1998) GATC motifs may alter the conformation of DNA depending on sequence context and N 6 -adenine methylation status: possible implications for DNA-protein recognition. Mol Gen Genet MGG 258:488–493. https://doi.org/10.1007/s004380050759

    Article  CAS  PubMed  Google Scholar 

  8. Wion D, Casadesús J (2006) N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat Rev Microbiol 4:183–192. https://doi.org/10.1038/nrmicro1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Camacho EM, Casadesús J (2005) Regulation of traJ transcription in the Salmonella virulence plasmid by strand-specific DNA adenine hemimethylation: regulation of traJ transcription by Dam methylation. Mol Microbiol 57:1700–1718. https://doi.org/10.1111/j.1365-2958.2005.04788.x

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Karmakar BC, Nagarajan D, Mukhopadhyay AK, Morgan RD, Rao DN (2018) N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori. Nucleic Acids Res 46:3429–3445. https://doi.org/10.1093/nar/gky126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clemens AW, Wu DY, Moore JR, Christian DL, Zhao G, Gabel HW (2019) MeCP2 represses enhancers through chromosome topology-associated DNA methylation. Mol Cell 77:1–15. https://doi.org/10.1016/j.molcel.2019.10.033

    Article  CAS  Google Scholar 

  12. Nye TM, van Gijtenbeek LA, Stevens AG, Schroeder JW, Randall JR, Matthews LA, Simmons LA (2020) Methyltransferase DnmA is responsible for genome-wide N6-methyladenosine modifications at non-palindromic recognition sites in Bacillus subtilis. Nucleic Acids Res 48:5332–5348. https://doi.org/10.1093/nar/gkaa266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu Y, Luo G-Z, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Doré LC, Weng X, Ji Q, Mets L, He C (2015) N6-Methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161:879–892. https://doi.org/10.1016/j.cell.2015.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beh LY, Debelouchina GT, Clay DM, Thompson RE, Lindblad KA, Hutton ER, Bracht JR, Sebra RP, Muir TW, Landweber LF (2019) Identification of a DNA N6-adenine methyltransferase complex and its impact on chromatin organization. Cell 177:1781–1796. https://doi.org/10.1016/j.cell.2019.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lizarraga A, O’Brown ZK, Boulias K, Roach L, Greer EL, Johnson PJ, Strobl-Mazzulla PH, de Miguel N (2020) Adenine DNA methylation, 3D genome organization, and gene expression in the parasite Trichomonas vaginalis. Proc Natl Acad Sci U S A 117:13033–13043. https://doi.org/10.1073/pnas.1917286117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236. https://doi.org/10.1093/nar/gkp874

    Article  CAS  PubMed  Google Scholar 

  17. Roberts RJ, Vincze T, Posfai J, Macelis D (2015) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299. https://doi.org/10.1093/nar/gku1046

    Article  CAS  PubMed  Google Scholar 

  18. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu C-H, Aravind L, He C, Shi Y (2015) DNA methylation on N6-Adenine in C. elegans. Cell 161:868–878. https://doi.org/10.1016/j.cell.2015.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J, Li C, Liu B, Luo Y, Zhu Y, Zhang N, He S, He C, Wang H, Chen D (2015) N6-Methyladenine DNA modification in drosophila. Cell 161:893–906. https://doi.org/10.1016/j.cell.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  20. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862. https://doi.org/10.1038/ng1598

    Article  CAS  PubMed  Google Scholar 

  21. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Gräf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Bäckdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJP, Durbin R, Tavaré S, Beck S (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26:779–785. https://doi.org/10.1038/nbt1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465. https://doi.org/10.1038/nmeth.1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J (2012) Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res 40:e29–e29. https://doi.org/10.1093/nar/gkr1146

    Article  CAS  PubMed  Google Scholar 

  24. Laszlo AH, Derrington IM, Brinkerhoff H, Langford KW, Nova IC, Samson JM, Bartlett JJ, Pavlenok M, Gundlach JH (2013) Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore Msp A. Proc Natl Acad Sci 110:18904–18909. https://doi.org/10.1073/pnas.1310240110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14:411–413. https://doi.org/10.1038/nmeth.4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prangishvili DA, Vashakidze RP, Chelidze MG, Gabriadze IY (1985) A restriction endonuclease Sua I from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. FEBS Lett 192:57–60. https://doi.org/10.1016/0014-5793(85)80042-9

    Article  CAS  PubMed  Google Scholar 

  27. Grogan DW (2003) Cytosine methylation by the suaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J Bacteriol 185:4657–4661. https://doi.org/10.1128/JB.185.15.4657-4661.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ouellette M, Jackson L, Chimileski S, Papke RT (2015) Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E)XK nuclease family protein HVO_A0006. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00251

  29. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom RR, Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ (2016) The epigenomic landscape of prokaryotes. PLoS Genet 12:e1005854. https://doi.org/10.1371/journal.pgen.1005854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Couturier M, Lindås A-C (2018) The DNA methylome of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.00137

  31. Chimileski S, Dolas K, Naor A, Gophna U, Papke RT (2014) Extracellular DNA metabolism in Haloferax volcanii. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00057

Download references

Acknowledgments

The authors would like to thank the staff at the Uppsala Genome Center, National Genomics Infrastructure, Science for Life Laboratory for helpful comments on the DNA quality check protocol.

Funding

Funding was provided by the Carl R. Woese Institute for Genomic Biology postdoctoral fellowship (to M.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohea Couturier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tellgren-Roth, C., Couturier, M. (2022). Detecting DNA Methylations in the Hyperthermoacidophilic Crenarchaeon Sulfolobus acidocaldarius Using SMRT Sequencing. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2413-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2412-8

  • Online ISBN: 978-1-0716-2413-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics