Skip to main content

Analysis of Protein–DNA Interactions Using Isothermal Titration Calorimetry: Successes and Failures

  • Protocol
  • First Online:
Prokaryotic Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2516))

Abstract

Isothermal titration calorimetry (ITC) is a golden standard for the characterization of protein–DNA binding affinities and allows direct assessment of the accompanying thermodynamic driving forces. Their interpretation can give insight into role of electrostatics, specificity of the DNA recognition, contribution of protein folding upon DNA binding and help to distinguish between minor and major groove binders. The main advantages of ITC are that the binding is measured in solution, and it requires no labeling of the samples, however, the method is not well suited for high-performance studies. Here we describe the sample preparation, a procedure to perform a typical ITC experiment, data analysis, and lastly discuss how to interpret the obtained thermodynamic parameters. In conclusion, we show examples of several unsuccessful ITC experiments and identify the underlying reasons for failed experiments. In most cases with a proper adjustment of the experimental setup, it was possible to obtain data appropriate for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Privalov PL, Crane-Robinson C (2018) Forces maintaining the DNA double helix and its complexes with transcription factors. Progress in Biophysics and Molecular Biology 135:30–48

    Article  CAS  Google Scholar 

  2. Tellinghuisen J (2012) Designing isothermal titration calorimetry experiments for the study of 1:1 binding: Problems with the “standard protocol”. Analytical Biochemistry 424(2):211–220

    Article  CAS  Google Scholar 

  3. Scheuermann TH, Brautigam CA (2015) High-precision, automated integration of multiple isothermal titration calorimetric thermograms: New features of NITPIC. Methods 76:87–98

    Article  CAS  Google Scholar 

  4. Lah J, Drobnak I, Dolinar M, Vesnaver G (2008) What drives the binding of minor groove-directed ligands to DNA hairpins? Nucleic Acids Research 36(3):897–904

    Article  CAS  Google Scholar 

  5. Houtman JC, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, Schuck P (2007) Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: Application to adaptor protein complexes in cell signaling. Protein Science 16(1):30–42

    Article  CAS  Google Scholar 

  6. Drobnak I, De Jonge N, Haesaerts S, Vesnaver G, Loris R, Lah J (2013) Energetic basis of uncoupling folding from binding for an intrinsically disordered protein. Journal of the American Chemical Society 135(4):1288–1294

    Article  CAS  Google Scholar 

  7. Drobnak I, Vesnaver G, Lah J (2010) Model-based thermodynamic analysis of reversible unfolding processes. The Journal of Physical Chemistry B 114(26):8713–8722

    Article  CAS  Google Scholar 

  8. Dragan AI, Li Z, Makeyeva EN, Milgotina EI, Liu Y, Crane-Robinson C, Privalov PL (2006) Forces driving the binding of homeodomains to DNA. Biochemistry 45(1):141–151

    Article  CAS  Google Scholar 

  9. Freiburger L, Auclair K, Mittermaier A (2015) Global ITC fitting methods in studies of protein allostery. Methods 76:149–161

    Article  CAS  Google Scholar 

  10. Privalov PL, Dragan AI, Crane-Robinson C, Breslauer KJ, Remeta DP, Minetti CA (2007) What drives proteins into the major or minor grooves of DNA? Journal of Molecular Biology 365(1):1–9

    Article  CAS  Google Scholar 

  11. Privalov PL, Dragan AI, Crane-Robinson C (2011) Interpreting protein/DNA interactions: Distinguishing specific from nonspecific and electrostatic from nonelectrostatic components. Nucleic Acids Research 39(7):2483–2491

    Article  CAS  Google Scholar 

  12. Vandervelde A, Drobnak I, Hadži S, Sterckx YG, Welte T, De Greve H, Charlier D, Efremov R, Loris R, Lah J (2017) Molecular mechanism governing ratio-dependent transcription regulation in the ccdAB operon. Nucleic Acids Research 45(6):2937–2950

    Article  CAS  Google Scholar 

  13. Frank DE, Saecker RM, Bond JP, Capp MW, Tsodikov OV, Melcher SE, Levandoski MM, Record MT Jr (1997) Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: Effects of converting a consensus site to a non-specific site. Journal of Molecular Biology 267(5):1186–1206

    Article  CAS  Google Scholar 

  14. Hadži S, Lah J (2021) Origin of heat capacity increment in DNA folding: The hydration effect. Biochimica et Biophysica Acta - General Subjects 1865(1):129774

    Article  Google Scholar 

  15. Dragan AI, Read CM, Crane-Robinson C (2019) Hydration differences between the major and minor grooves of DNA revealed from heat capacity measurements. European Biophysics Journal 48(2):131–138

    Article  CAS  Google Scholar 

  16. Medoš Ž, Čobanov I, Bešter-Rogač M et al (2020) Usually overlooked problems related with measurements of high-heat effects using power compensation isothermal titration calorimetry. Journal of Thermal Analysis and Calorimetry

    Google Scholar 

  17. Bončina M, Lah J, Reščič J, Vlachy V (2010) Thermodynamics of the lysozyme-salt interaction from calorimetric titrations. The Journal of Physical Chemistry B 114:4313–4319

    Article  Google Scholar 

  18. Velazquez-Campoy A, Freire E (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nature Protocols 1(1):186–191

    Article  CAS  Google Scholar 

  19. Pinto A, Chen SX, Zhang DY (2018) Simultaneous and stoichiometric purification of hundreds of oligonucleotides. Nature Communications 9:2467

    Article  Google Scholar 

  20. Cantor CR, Warshow MM, Shapiro H (1970) Oligonucleotide interactions. III. Circular dichroism studies of the confromation of deox- yoligonucleotides. Biopolymers 9:1059–1077

    Article  CAS  Google Scholar 

  21. Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Research 32(1):e13

    Article  Google Scholar 

  22. Goldberg RN, Kishore N, Lennen RM (2002) Thermodynamic quantities for the ionization reactions of buffers. Journal of Physical and Chemical Reference Data 31:231–370

    Article  CAS  Google Scholar 

  23. Kantonen SA, Henriksen NM, Gilson MK (2017) Evaluation and minimization of uncertainty in ITC binding measurements: Heat error, concentration error, saturation, and stoichiometry. Biochimica et Biophysica Acta - General Subjects 1861(2):485–498

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Hadži .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hadži, S., Lah, J. (2022). Analysis of Protein–DNA Interactions Using Isothermal Titration Calorimetry: Successes and Failures. In: Peeters, E., Bervoets, I. (eds) Prokaryotic Gene Regulation. Methods in Molecular Biology, vol 2516. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2413-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2413-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2412-8

  • Online ISBN: 978-1-0716-2413-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics