Skip to main content

Detergent-Free Membrane Protein Purification Using SMA Polymer

  • Protocol
  • First Online:
Heterologous Expression of Membrane Proteins

Abstract

One of the big challenges for the study of structure and function of membrane proteins is the need to extract them from the membrane. Traditionally this was achieved using detergents which disrupt the membrane and form a micelle around the protein, but this can cause issues with protein function and/or stability. In 2009 an alternative approach was reported, using styrene maleic acid (SMA) copolymer to extract small discs of lipid bilayer encapsulated by the polymer and termed SMALPs (SMA lipid particles). Since then this approach has been shown to work for a range of different proteins from many different expression systems. It allows the extraction and purification of a target protein while maintaining a lipid bilayer environment. Recently this has led to several new high-resolution structures and novel insights to function. As with any method there are some limitations and issues to be aware of. Here we describe a standard protocol for preparation of the polymer and its use for membrane protein purification, and also include details of typical challenges that may be encountered and possible ways to address those.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1–2):105–117. https://doi.org/10.1016/j.bbamem.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  2. Zoghbi ME, Cooper RS, Altenberg GA (2016) The lipid bilayer modulates the structure and function of an ATP-binding cassette exporter. J Biol Chem 291(9):4453–4461. https://doi.org/10.1074/jbc.M115.698498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardy D, Desuzinges Mandon E, Rothnie AJ, Jawhari A (2018) The yin and yang of solubilization and stabilization for wild-type and full-length membrane protein. Methods 147:118–125. https://doi.org/10.1016/j.ymeth.2018.02.017

    Article  CAS  PubMed  Google Scholar 

  4. Dawaliby R, Trubbia C, Delporte C, Masureel M, Van Antwerpen P, Kobilka BK, Govaerts C (2016) Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol 12(1):35–39. https://doi.org/10.1038/nchembio.1960

    Article  CAS  PubMed  Google Scholar 

  5. van den Brink-van der Laan E, Chupin V, Killian JA, de Kruijff B (2004) Stability of KcsA tetramer depends on membrane lateral pressure. Biochemistry 43(14):4240–4250. https://doi.org/10.1021/bi036129d

    Article  CAS  PubMed  Google Scholar 

  6. Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131(22):7484–7485. https://doi.org/10.1021/ja810046q

    Article  CAS  PubMed  Google Scholar 

  7. Jamshad M, Grimard V, Idini I, Knowles TJ, Dowle MR, Schofield N, Sridhar P, Lin YP, Finka R, Wheatley M, Thomas ORT, Palmer RE, Overduin M, Govaerts C, Ruysschaert JM, Edler KJ, Dafforn TR (2015) Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Res 8(3):774–789. https://doi.org/10.1007/s12274-014-0560-6

    Article  CAS  PubMed  Google Scholar 

  8. Unger L, Ronco-Campana A, Kitchen P, Bill RM, Rothnie AJ (2021) Biological insights from SMA-extracted proteins. Biochem Soc Trans 49(3):1349–1359. https://doi.org/10.1042/BST20201067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gulati S, Jamshad M, Knowles TJ, Morrison KA, Downing R, Cant N, Collins R, Koenderink JB, Ford RC, Overduin M, Kerr ID, Dafforn TR, Rothnie AJ (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J 461(2):269–278. https://doi.org/10.1042/BJ20131477

    Article  CAS  PubMed  Google Scholar 

  10. Jamshad M, Charlton J, Lin YP, Routledge SJ, Bawa Z, Knowles TJ, Overduin M, Dekker N, Dafforn TR, Bill RM, Poyner DR, Wheatley M (2015) G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep 35(2):e00188. https://doi.org/10.1042/BSR20140171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dorr JM, Koorengevel MC, Schafer M, Prokofyev AV, Scheidelaar S, van der Cruijsen EA, Dafforn TR, Baldus M, Killian JA (2014) Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci U S A 111(52):18607–18612. https://doi.org/10.1073/pnas.1416205112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bada Juarez JF, Munoz-Garcia JC, Inacio Dos Reis R, Henry A, MCMillan D, Kriek M, Wood M, Vandenplas C, Sands Z, Castro L, Taylor R, Watts A (2020) Detergent-free extraction of a functional low-expressing GPCR from a human cell line. Biochim Biophys Acta Biomembr 1862(3):183152. https://doi.org/10.1016/j.bbamem.2019.183152

    Article  CAS  PubMed  Google Scholar 

  13. Ayub H, Clare M, Milic I, Chmel NP, Boning H, Devitt A, Krey T, Bill RM, Rothnie AJ (2020) CD81 extracted in SMALP nanodiscs comprises two distinct protein populations within a lipid environment enriched with negatively charged headgroups. Biochim Biophys Acta Biomembr 1862(11):183419. https://doi.org/10.1016/j.bbamem.2020.183419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Postis V, Rawson S, Mitchell JK, Lee SC, Parslow RA, Dafforn TR, Baldwin SA, Muench SP (2015) The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim Biophys Acta 1848(2):496–501. https://doi.org/10.1016/j.bbamem.2014.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swainsbury DJ, Scheidelaar S, van Grondelle R, Killian JA, Jones MR (2014) Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew Chem Int Ed Engl 53(44):11803–11807. https://doi.org/10.1002/anie.201406412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dilworth MV, Findlay HE, Booth PJ (2021) Detergent-free purification and reconstitution of functional human serotonin transporter (SERT) using diisobutylene maleic acid (DIBMA) copolymer. Biochim Biophys Acta Biomembr 1863(7):183602. https://doi.org/10.1016/j.bbamem.2021.183602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laursen T, Borch J, Knudsen C, Bavishi K, Torta F, Martens HJ, Silvestro D, Hatzakis NS, Wenk MR, Dafforn TR, Olsen CE, Motawia MS, Hamberger B, Moller BL, Bassard JE (2016) Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354(6314):890–893. https://doi.org/10.1126/science.aag2347

    Article  CAS  PubMed  Google Scholar 

  18. Gulamhussein AA, Meah D, Soja DD, Fenner S, Saidani Z, Akram A, Lallie S, Mathews A, Painter C, Liddar MK, Mohammed Z, Chiu LK, Sumar SS, Healy H, Hussain N, Patel JH, Hall SCL, Dafforn TR, Rothnie AJ (2019) Examining the stability of membrane proteins within SMALPs. Eur Polym J 112:120–125. https://doi.org/10.1016/j.eurpolymj.2018.12.008

    Article  CAS  Google Scholar 

  19. Morrison KA, Akram A, Mathews A, Khan ZA, Patel JH, Zhou C, Hardy DJ, Moore-Kelly C, Patel R, Odiba V, Knowles TJ, Javed MU, Chmel NP, Dafforn TR, Rothnie AJ (2016) Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure. Biochem J 473(23):4349–4360. https://doi.org/10.1042/BCJ20160723

    Article  CAS  PubMed  Google Scholar 

  20. Logez C, Damian M, Legros C, Dupre C, Guery M, Mary S, Wagner R, M'Kadmi C, Nosjean O, Fould B, Marie J, Fehrentz JA, Martinez J, Ferry G, Boutin JA, Baneres JL (2016) Detergent-free isolation of functional G protein-coupled receptors into Nanometric lipid particles. Biochemistry 55(1):38–48. https://doi.org/10.1021/acs.biochem.5b01040

    Article  CAS  PubMed  Google Scholar 

  21. Sun C, Benlekbir S, Venkatakrishnan P, Wang Y, Hong S, Hosler J, Tajkhorshid E, Rubinstein JL, Gennis RB (2018) Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557(7703):123–126. https://doi.org/10.1038/s41586-018-0061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qiu W, Fu Z, Xu GG, Grassucci RA, Zhang Y, Frank J, Hendrickson WA, Guo Y (2018) Structure and activity of lipid bilayer within a membrane-protein transporter. Proc Natl Acad Sci U S A 115(51):12985–12990. https://doi.org/10.1073/pnas.1812526115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flegler VJ, Rasmussen A, Rao S, Wu N, Zenobi R, Sansom MSP, Hedrich R, Rasmussen T, Bottcher B (2020) The MscS-like channel YnaI has a gating mechanism based on flexible pore helices. Proc Natl Acad Sci U S A 117(46):28754–28762. https://doi.org/10.1073/pnas.2005641117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Broecker J, Eger BT, Ernst OP (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid Nanodiscs. Structure 25(2):384–392. https://doi.org/10.1016/j.str.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  25. Tascon I, Sousa JS, Corey RA, Mills DJ, Griwatz D, Aumuller N, Mikusevic V, Stansfeld PJ, Vonck J, Hanelt I (2020) Structural basis of proton-coupled potassium transport in the KUP family. Nat Commun 11(1):626. https://doi.org/10.1038/s41467-020-14441-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoder N, Gouaux E (2020) The His-Gly motif of acid-sensing ion channels resides in a reentrant “loop” implicated in gating and ion selectivity. Elife 9:e56527. https://doi.org/10.7554/eLife.56527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu J, Zhu H, Lape R, Greiner T, Du J, Lu W, Sivilotti L, Gouaux E (2021) Mechanism of gating and partial agonist action in the glycine receptor. Cell 184(4):957–968 e921. https://doi.org/10.1016/j.cell.2021.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cherepanov DA, Brady NG, Shelaev IV, Nguyen J, Gostev FE, Mamedov MD, Nadtochenko VA, Bruce BD (2020) PSI-SMALP, a detergent-free cyanobacterial photosystem I, reveals faster femtosecond photochemistry. Biophys J 118(2):337–351. https://doi.org/10.1016/j.bpj.2019.11.3391

    Article  CAS  PubMed  Google Scholar 

  29. Horsey AJ, Briggs DA, Holliday ND, Briddon SJ, Kerr ID (2020) Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. Biochim Biophys Acta Biomembr 1862(6):183218. https://doi.org/10.1016/j.bbamem.2020.183218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teo ACK, Lee SC, Pollock NL, Stroud Z, Hall S, Thakker A, Pitt AR, Dafforn TR, Spickett CM, Roper DI (2019) Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Sci Rep 9(1):1813. https://doi.org/10.1038/s41598-018-37962-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prabudiansyah I, Kusters I, Caforio A, Driessen AJ (2015) Characterization of the annular lipid shell of the sec translocon. Biochim Biophys Acta 1848(10 Pt A):2050–2056. https://doi.org/10.1016/j.bbamem.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  32. Swainsbury DJK, Proctor MS, Hitchcock A, Cartron ML, Qian P, Martin EC, Jackson PJ, Madsen J, Armes SP, Hunter CN (2018) Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc1 and Synechocystis sp. PCC 6803 cytochrome b6f complexes with styrene maleic acid. Biochim Biophys Acta Bioenerg 1859(3):215–225. https://doi.org/10.1016/j.bbabio.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  33. Esmaili M, Tancowny BP, Wang X, Moses A, Cortez LM, Sim VL, Wille H, Overduin M (2020) Native nanodiscs formed by styrene maleic acid copolymer derivatives help recover infectious prion multimers bound to brain-derived lipids. J Biol Chem 295(25):8460–8469. https://doi.org/10.1074/jbc.RA119.012348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S (2017) Solubilization of membrane proteins into functional lipid-bilayer Nanodiscs using a Diisobutylene/maleic acid copolymer. Angew Chem Int Ed Engl 56(7):1919–1924. https://doi.org/10.1002/anie.201610778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stroud Z, Hall SCL, Dafforn TR (2018) Purification of membrane proteins free from conventional detergents: SMA, new polymers, new opportunities and new insights. Methods 147:106–117. https://doi.org/10.1016/j.ymeth.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  36. Hall SCL, Tognoloni C, Charlton J, Bragginton EC, Rothnie AJ, Sridhar P, Wheatley M, Knowles TJ, Arnold T, Edler KJ, Dafforn TR (2018) An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles. Nanoscale 10(22):10609–10619. https://doi.org/10.1039/c8nr01322e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gulamhussein AA, Uddin R, Tighe BJ, Poyner DR, Rothnie AJ (2020) A comparison of SMA (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane protein purification. Biochim Biophys Acta Biomembr 1862(7):183281. https://doi.org/10.1016/j.bbamem.2020.183281

    Article  CAS  PubMed  Google Scholar 

  38. Lee SC, Knowles TJ, Postis VL, Jamshad M, Parslow RA, Lin YP, Goldman A, Sridhar P, Overduin M, Muench SP, Dafforn TR (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11(7):1149–1162. https://doi.org/10.1038/nprot.2016.070

    Article  CAS  PubMed  Google Scholar 

  39. Kopf AH, Koorengevel MC, van Walree CA, Dafforn TR, Killian JA (2019) A simple and convenient method for the hydrolysis of styrene-maleic anhydride copolymers to styrene-maleic acid copolymers. Chem Phys Lipids 218:85–90. https://doi.org/10.1016/j.chemphyslip.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  40. Paulin S, Jamshad M, Dafforn TR, Garcia-Lara J, Foster SJ, Galley NF, Roper DI, Rosado H, Taylor PW (2014) Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a. Nanotechnology 25(28):285101. https://doi.org/10.1088/0957-4484/25/28/285101

    Article  CAS  PubMed  Google Scholar 

  41. Korotych O, Mondal J, Gattás-Asfura KM, Hendricks J, Bruce BD (2019) Evaluation of commercially available styrene-co-maleic acid polymers for the extraction of membrane proteins from spinach chloroplast thylakoids. Eur Polym J 114:485–500. https://doi.org/10.1016/j.eurpolymj.2018.10.035

    Article  CAS  Google Scholar 

  42. Scheidelaar S, Koorengevel MC, van Walree CA, Dominguez JJ, Dorr JM, Killian JA (2016) Effect of polymer composition and pH on membrane Solubilization by styrene-maleic acid copolymers. Biophys J 111(9):1974–1986. https://doi.org/10.1016/j.bpj.2016.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kopf AH, Dorr JM, Koorengevel MC, Antoniciello F, Jahn H, Killian JA (2020) Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene-maleic acid copolymers. Biochim Biophys Acta Biomembr 1862(2):183125. https://doi.org/10.1016/j.bbamem.2019.183125

    Article  CAS  PubMed  Google Scholar 

  44. Bersch B, Dorr JM, Hessel A, Killian JA, Schanda P (2017) Proton-detected solid-state NMR spectroscopy of a zinc diffusion facilitator protein in native Nanodiscs. Angew Chem Int Ed Engl 56(9):2508–2512. https://doi.org/10.1002/anie.201610441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Voskoboynikova N, Karlova M, Kurre R, Mulkidjanian AY, Shaitan KV, Sokolova OS, Steinhoff HJ, Heinisch JJ (2021) A three-dimensional model of the yeast transmembrane sensor Wsc1 obtained by SMA-based detergent-free purification and transmission electron microscopy. J Fungi (Basel) 7(2):118. https://doi.org/10.3390/jof7020118

    Article  CAS  Google Scholar 

  46. Karlova MG, Voskoboynikova N, Gluhov GS, Abramochkin D, Malak OA, Mulkidzhanyan A, Loussouarn G, Steinhoff HJ, Shaitan KV, Sokolova OS (2019) Detergent-free solubilization of human Kv channels expressed in mammalian cells. Chem Phys Lipids 219:50–57. https://doi.org/10.1016/j.chemphyslip.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  47. Hardy D, Bill RM, Rothnie AJ, Jawhari A (2019) Stabilization of human multidrug resistance protein 4 (MRP4/ABCC4) using novel Solubilization agents. SLAS Discov 24(10):1009–1017. https://doi.org/10.1177/2472555219867074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scheidelaar S, Koorengevel MC, Pardo JD, Meeldijk JD, Breukink E, Killian JA (2015) Molecular model for the solubilization of membranes into nanodisks by styrene maleic acid copolymers. Biophys J 108(2):279–290. https://doi.org/10.1016/j.bpj.2014.11.3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pollock NL, Lee SC, Patel JH, Gulamhussein AA, Rothnie AJ (2018) Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer. Biochim Biophys Acta 1860(4):809–817. https://doi.org/10.1016/j.bbamem.2017.08.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 847,419 (MemTrain) as well as the ERACoBioTech MeMBrane project and BBSRC (BB/R02152X/1) to A.D.G, A.J.R and R.M.B. Also, BBSRC CASE studentship (BB/L015846/1) and BBSRC grant (BB/S008160/1) to A.J.R., and BBSRC grant (BB/S001611/1) to I.D.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice J. Rothnie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Broadbent, L. et al. (2022). Detergent-Free Membrane Protein Purification Using SMA Polymer. In: Mus-Veteau, I. (eds) Heterologous Expression of Membrane Proteins. Methods in Molecular Biology, vol 2507. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2368-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2368-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2367-1

  • Online ISBN: 978-1-0716-2368-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics