Skip to main content

Detecting Tandem Repeat Expansions Using Short-Read Sequencing for Clinical Use

  • Protocol
  • First Online:
Genomic Structural Variants in Nervous System Disorders

Part of the book series: Neuromethods ((NM,volume 182))

Abstract

Repeat expansion disorders are a unique class of genetic diseases caused by expansions of short tandem repeats. Until recently, these pathogenic variations were detected with locus-by-locus lab-based methods leading to underascertainment and were thought to be undetectable by short-read sequencing. Repeat expansion disorders present with a diverse set of phenotypes including overlap with several common complex neurological disorders; hence, the importance of their detection is becoming increasingly recognized.

Recently bioinformatic methods have been developed that can detect both known and novel repeat expansions in standard short-read whole exome and whole genome sequencing data. In this chapter, we review how these methods work, why they need to be incorporated into all whole genome sequencing pipelines, and future directions in repeat expansion disorder genomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. https://doi.org/10.1038/35057062

    Article  PubMed  Google Scholar 

  2. Baptiste BA, Eckert KA (2012) DNA polymerase kappa microsatellite synthesis: two distinct mechanisms of slippage-mediated errors. Environ Mol Mutagen 53(9):787–796. https://doi.org/10.1002/em.21721

    Article  CAS  PubMed  Google Scholar 

  3. Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46. https://doi.org/10.1038/nrg3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paulson H (2018) Repeat expansion diseases. Handb Clin Neurol 147:105–123. https://doi.org/10.1016/B978-0-444-63233-3.00009-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bird TD (1998) Hereditary ataxia overview. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  6. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita V-M, Kaivorinne A-L, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M, Consortium I, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  Google Scholar 

  7. Bird TD (1999) Myotonic dystrophy type 1. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  8. Schoser B (2006) Myotonic dystrophy type 2. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  9. La Spada A (1999) Spinal and bulbar muscular atrophy. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  10. Lehesjoki A-E, Kälviäinen R (2004) Progressive myoclonic epilepsy type 1. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  11. Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A, Toyoshima Y, Kakita A, Takahashi H, Suzuki Y, Sugano S, Qu W, Ichikawa K, Yurino H, Higasa K, Shibata S, Mitsue A, Tanaka M, Ichikawa Y, Takahashi Y, Date H, Matsukawa T, Kanda J, Nakamoto FK, Higashihara M, Abe K, Koike R, Sasagawa M, Kuroha Y, Hasegawa N, Kanesawa N, Kondo T, Hitomi T, Tada M, Takano H, Saito Y, Sanpei K, Onodera O, Nishizawa M, Nakamura M, Yasuda T, Sakiyama Y, Otsuka M, Ueki A, Kaida K-I, Shimizu J, Hanajima R, Hayashi T, Terao Y, Inomata-Terada S, Hamada M, Shirota Y, Kubota A, Ugawa Y, Koh K, Takiyama Y, Ohsawa-Yoshida N, Ishiura S, Yamasaki R, Tamaoka A, Akiyama H, Otsuki T, Sano A, Ikeda A, Goto J, Morishita S, Tsuji S (2018) Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 50(4):581–590. https://doi.org/10.1038/s41588-018-0067-2

    Article  CAS  PubMed  Google Scholar 

  12. Corbett MA, Kroes T, Veneziano L, Bennett MF, Florian R, Schneider AL, Coppola A, Licchetta L, Franceschetti S, Suppa A, Wenger A, Mei D, Pendziwiat M, Kaya S, Delledonne M, Straussberg R, Xumerle L, Regan B, Crompton D, van Rootselaar A-F, Correll A, Catford R, Bisulli F, Chakraborty S, Baldassari S, Tinuper P, Barton K, Carswell S, Smith M, Berardelli A, Carroll R, Gardner A, Friend KL, Blatt I, Iacomino M, Di Bonaventura C, Striano S, Buratti J, Keren B, Nava C, Forlani S, Rudolf G, Hirsch E, Leguern E, Labauge P, Balestrini S, Sander JW, Afawi Z, Helbig I, Ishiura H, Tsuji S, Sisodiya SM, Casari G, Sadleir LG, van Coller R, Tijssen MAJ, Klein KM, van den Maagdenberg AMJM, Zara F, Guerrini R, Berkovic SF, Pippucci T, Canafoglia L, Bahlo M, Striano P, Scheffer IE, Brancati F, Depienne C, Gecz J (2019) Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun 10(1):4920. https://doi.org/10.1038/s41467-019-12671-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Florian RT, Kraft F, Leitão E, Kaya S, Klebe S, Magnin E, van Rootselaar A-F, Buratti J, Kühnel T, Schröder C, Giesselmann S, Tschernoster N, Altmueller J, Lamiral A, Keren B, Nava C, Bouteiller D, Forlani S, Jornea L, Kubica R, Ye T, Plassard D, Jost B, Meyer V, Deleuze J-F, Delpu Y, Avarello MDM, Vijfhuizen LS, Rudolf G, Hirsch E, Kroes T, Reif PS, Rosenow F, Ganos C, Vidailhet M, Thivard L, Mathieu A, Bourgeron T, Kurth I, Rafehi H, Steenpass L, Horsthemke B, FAME Consortium, LeGuern E, Klein KM, Labauge P, Bennett MF, Bahlo M, Gecz J, Corbett MA, Tijssen MAJ, van den Maagdenberg AMJM, Depienne C (2019) Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myoclonic epilepsy type 3. Nat Commun 10(1):4919. https://doi.org/10.1038/s41467-019-12763-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yeetong P, Pongpanich M, Srichomthong C, Assawapitaksakul A, Shotelersuk V, Tantirukdham N, Chunharas C, Suphapeetiporn K, Shotelersuk V (2019) TTTCA repeat insertions in an intron of YEATS2 in benign adult familial myoclonic epilepsy type 4. Brain 142(11):3360–3366. https://doi.org/10.1093/brain/awz267

    Article  PubMed  Google Scholar 

  15. Hunter JE, Berry-Kravis E, Hipp H, Todd PK (1998) FMR1 Disorders. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  16. Vance C, Al-Chalabi A, Ruddy D, Smith BN, Hu X, Sreedharan J, Siddique T, Schelhaas HJ, Kusters B, Troost D, Baas F, de Jong V, Shaw CE (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain 129(Pt 4):868–876. https://doi.org/10.1093/brain/awl030

    Article  PubMed  Google Scholar 

  17. Cooper-Knock J, Frolov A, Highley JR, Charlesworth G, Kirby J, Milano A, Hartley J, Ince PG, McDermott CJ, Lashley T, Revesz T, Shaw PJ, Wood NW, Bandmann O (2013) C9ORF72 expansions, parkinsonism, and Parkinson disease: a clinicopathologic study. Neurology 81(9):808–811. https://doi.org/10.1212/WNL.0b013e3182a2cc38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paulson H, Shakkottai V (1998) Spinocerebellar ataxia type 3. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews®. University of Washington, Seattle

    Google Scholar 

  19. Schneider SA, Walker RH, Bhatia KP (2007) The Huntington’s disease-like syndromes: what to consider in patients with a negative Huntington’s disease gene. Nat Clin Pract Neurol 3(9):517–525. https://doi.org/10.1038/ncpneuro0606

    Article  CAS  PubMed  Google Scholar 

  20. Mootha VV, Hussain I, Cunnusamy K, Graham E, Gong X, Neelam S, Xing C, Kittler R, Petroll WM (2015) TCF4 triplet repeat expansion and nuclear RNA foci in Fuchs’ endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 56(3):2003–2011. https://doi.org/10.1167/iovs.14-16222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE, Edwards AO, Baratz KH (2012) A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dystrophy. PLoS One 7(11):e49083. https://doi.org/10.1371/journal.pone.0049083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuot A, Hewitt AW, Snibson GR, Souzeau E, Mills R, Craig JE, Burdon KP, Sharma S (2017) TGC repeat expansion in the TCF4 gene increases the risk of Fuchs’ endothelial corneal dystrophy in Australian cases. PLoS One 12(8):e0183719. https://doi.org/10.1371/journal.pone.0183719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cagnoli C, Brussino A, Mancini C, Ferrone M, Orsi L, Salmin P, Pappi P, Giorgio E, Pozzi E, Cavalieri S, Di Gregorio E, Ferrero M, Filla A, De Michele G, Gellera C, Mariotti C, Nethisinghe S, Giunti P, Stevanin G, Brusco A (2018) Spinocerebellar ataxia tethering PCR: a rapid genetic test for the diagnosis of spinocerebellar ataxia types 1, 2, 3, 6, and 7 by PCR and capillary electrophoresis. J Mol Diagn 20(3):289–297. https://doi.org/10.1016/j.jmoldx.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  24. Mansfield ES, Vainer M, Enad S, Barker DL, Harris D, Rappaport E, Fortina P (1996) Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis. Genome Res 6(9):893–903. https://doi.org/10.1101/gr.6.9.893

    Article  CAS  PubMed  Google Scholar 

  25. Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, Brock DJ (1996) A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet 33(12):1022–1026. https://doi.org/10.1136/jmg.33.12.1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monaghan KG, Lyon E, Spector EB, erican College of Medical Genetics and Genomics (2013) ACMG standards and guidelines for fragile X testing: a revision to the disease-specific supplements to the standards and guidelines for clinical genetics Laboratories of the American College of Medical Genetics and Genomics. Genet Med 15(7):575–586. https://doi.org/10.1038/gim.2013.61

    Article  CAS  PubMed  Google Scholar 

  27. Jama M, Millson A, Miller CE, Lyon E (2013) Triplet repeat primed PCR simplifies testing for Huntington disease. J Mol Diagn 15(2):255–262. https://doi.org/10.1016/j.jmoldx.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  28. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12(11):745–755. https://doi.org/10.1038/nrg3031

    Article  CAS  PubMed  Google Scholar 

  29. https://doi.org/10.1038/s41586-021-03205-y

  30. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O’Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database Consortium, Neale BM, Daly MJ, MacArthur DG (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443. https://doi.org/10.1038/s41586-020-2308-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. https://doi.org/10.1016/S1474-4422(21)00462-2

  32. Epi25 Collaborative (2019) Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals. Am J Hum Genet 105(2):267–282. https://doi.org/10.1016/j.ajhg.2019.05.020

    Article  CAS  Google Scholar 

  33. Bahlo M, Bennett MF, Degorski P, Tankard RM, Delatycki MB, Lockhart PJ (2018) Recent advances in the detection of repeat expansions with short-read next-generation sequencing. F1000Res 7. https://doi.org/10.12688/f1000research.13980.1

  34. Dolzhenko E, van Vugt JJFA, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G, Ajay SS, Rajan V, Lajoie BR, Johnson NH, Kingsbury Z, Humphray SJ, Schellevis RD, Brands WJ, Baker M, Ra R, Kooyman M, Tazelaar GHP, van Es MA, McLaughlin R, Sproviero W, Shatunov A, Jones A, Al Khleifat A, Pittman A, Morgan S, Hardiman O, Al-Chalabi A, Shaw C, Smith B, Neo EJ, Morrison K, Shaw PJ, Reeves C, Winterkorn L, Wexler NS, Group USVCR, Housman DE, Ng CW, Li AL, Taft RJ, van den Berg LH, Bentley DR, Veldink JH, Eberle MA (2017) Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res 27(11):1895–1903. https://doi.org/10.1101/gr.225672.117

    Article  CAS  Google Scholar 

  35. Dolzhenko E, Deshpande V, Schlesinger F, Krusche P, Petrovski R, Chen S, Emig-Agius D, Gross A, Narzisi G, Bowman B, Scheffler K, van Vugt JJFA, French C, Sanchis-Juan A, Ibáñez K, Tucci A, Lajoie BR, Veldink JH, Raymond FL, Taft RJ, Bentley DR, Eberle MA (2019) ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 35(22):4754–4756. https://doi.org/10.1093/bioinformatics/btz431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tankard RM, Bennett MF, Degorski P, Delatycki MB, Lockhart PJ, Bahlo M (2018) Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data. Am J Hum Genet 103(6):858–873. https://doi.org/10.1016/j.ajhg.2018.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dashnow H, Lek M, Phipson B, Halman A, Sadedin S, Lonsdale A, Davis M, Lamont P, Clayton JS, Laing NG, MacArthur DG, Oshlack A (2018) STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol 19(121). https://doi.org/10.1186/s13059-018-1505-2

  38. Tang H, Kirkness EF, Lippert C, Biggs WH, Fabani M, Guzman E, Ramakrishnan S, Lavrenko V, Kakaradov B, Hou C, Hicks B, Heckerman D, Och FJ, Caskey CT, Venter JC, Telenti A (2017) Profiling of short-tandem-repeat disease alleles in 12,632 human whole genomes. Am J Hum Genet 101(5):700–715. https://doi.org/10.1016/j.ajhg.2017.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mousavi N, Shleizer-Burko S, Yanicky R, Gymrek M (2019) Profiling the genomewide landscape of tandem repeat expansions. Nucleic Acids Res 47(15):e90. https://doi.org/10.1093/nar/gkz501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dolzhenko E, Bennett MF, Richmond PA, Trost B, Chen S, van Vugt JJFA, Nguyen C, Narzisi G, Gainullin VG, Gross AM, Lajoie BR, Taft RJ, Wasserman WW, Scherer SW, Veldink JH, Bentley DR, Yuen RKC, Bahlo M, Eberle MA (2020) ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data. Genome Biol 21(1):102. https://doi.org/10.1186/s13059-020-02017-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Doi K, Monjo T, Hoang PH, Yoshimura J, Yurino H, Mitsui J, Ishiura H, Takahashi Y, Ichikawa Y, Goto J, Tsuji S, Morishita S (2014) Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing. Bioinformatics 30(6):815–822. https://doi.org/10.1093/bioinformatics/btt647

    Article  CAS  PubMed  Google Scholar 

  42. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, Almansour MA, Kikuchi JK, Taira M, Mitsui J, Takahashi Y, Ichikawa Y, Mano T, Iwata A, Harigaya Y, Matsukawa MK, Matsukawa T, Tanaka M, Shirota Y, Ohtomo R, Kowa H, Date H, Mitsue A, Hatsuta H, Morimoto S, Murayama S, Shiio Y, Saito Y, Mitsutake A, Kawai M, Sasaki T, Sugiyama Y, Hamada M, Ohtomo G, Terao Y, Nakazato Y, Takeda A, Sakiyama Y, Umeda-Kameyama Y, Shinmi J, Ogata K, Kohno Y, Lim S-Y, Tan AH, Shimizu J, Goto J, Nishino I, Toda T, Morishita S, Tsuji S (2019) Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 51(8):1222–1232. https://doi.org/10.1038/s41588-019-0458-z

    Article  CAS  PubMed  Google Scholar 

  43. Rajan-Babu I-S, Peng J, Chiu R, Mohajeri A, Dolzhenko E, Eberle MA, Birol I, Friedman JM, Study I, Study C (2021) Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions. Genome Med. https://doi.org/10.1101/2020.06.06.137356

  44. Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY, Humphrey J, Jaunmuktane Z, Sivakumar P, Polke J, Ilyas M, Tribollet E, Tomaselli PJ, Devigili G, Callegari I, Versino M, Salpietro V, Efthymiou S, Kaski D, Wood NW, Andrade NS, Buglo E, Rebelo A, Rossor AM, Bronstein A, Fratta P, Marques WJ, Züchner S, Reilly MM, Houlden H (2019) Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 51(4):649–658. https://doi.org/10.1038/s41588-019-0372-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rafehi H, Szmulewicz DJ, Bennett MF, Sobreira NLM, Pope K, Smith KR, Gillies G, Diakumis P, Dolzhenko E, Eberle MA, Barcina MG, Breen DP, Chancellor AM, Cremer PD, Delatycki MB, Fogel BL, Hackett A, Halmagyi GM, Kapetanovic S, Lang A, Mossman S, Mu W, Patrikios P, Perlman SL, Rosemergy I, Storey E, Watson SRD, Wilson MA, Zee DS, Valle D, Amor DJ, Bahlo M, Lockhart PJ (2019) Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet 105(1):151–165. https://doi.org/10.1016/j.ajhg.2019.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bennett MF, Oliver KL, Regan BM, Bellows ST, Schneider AL, Rafehi H, Sikta N, Crompton DE, Coleman M, Hildebrand MS, Corbett MA, Kroes T, Gecz J, Scheffer IE, Berkovic SF, Bahlo M (2020) Familial adult myoclonic epilepsy type 1 SAMD12 TTTCA repeat expansion arose 17,000 years ago and is present in Sri Lankan and Indian families. Eur J Hum Genet 28(7):973–978. https://doi.org/10.1038/s41431-020-0606-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rafehi H, Szmulewicz DJ, Pope K, Wallis M, Christodoulou J, White SM, Delatycki MB, Lockhart PJ, Bahlo M (2020) Rapid diagnosis of spinocerebellar ataxia 36 in a three-generation family using short-read whole-genome sequencing data. Mov Disord 35:1675–1679

    Article  CAS  Google Scholar 

  49. Eratne D, Schneider A, Lynch E, Martyn M, Velakoulis D, Fahey M, Kwan P, Leventer R, Rafehi H, Chong B, Stark Z, Lunke S, Phelan DG, O’Keefe M, Siemering K, West K, Sexton A, Jarmolowicz A, Taylor JA, Schultz J, Purvis R, Uebergang E, Chalinor H, Creighton B, Gelfand N, Saks T, Prawer Y, Smagarinsky Y, Pan T, Goranitis I, Ademi Z, Gaff C, Huq A, Walsh M, James PA, Krzesinski EI, Wallis M, Stutterd CA, Bahlo M, Delatycki MB, Berkovic SF (2020) The clinical utility of exome sequencing and extended bioinformatic analyses in adolescents and adults with a broad range of neurological phenotypes: an Australian perspective. J Neurol Sci 420:117260. https://doi.org/10.1016/j.jns.2020.117260

    Article  CAS  PubMed  Google Scholar 

  50. Giesselmann P, Brändl B, Raimondeau E, Bowen R, Rohrandt C, Tandon R, Kretzmer H, Assum G, Galonska C, Siebert R, Ammerpohl O, Heron A, Schneider SA, Ladewig J, Koch P, Schuldt BM, Graham JE, Meissner A, Müller F-J (2019) Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat Biotechnol 37(12):1478–1481. https://doi.org/10.1038/s41587-019-0293-x

    Article  CAS  PubMed  Google Scholar 

  51. Mitsuhashi S, Frith MC, Mizuguchi T, Miyatake S, Toyota T, Adachi H, Oma Y, Kino Y, Mitsuhashi H, Matsumoto N (2019) Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol 20(1):58. https://doi.org/10.1186/s13059-019-1667-6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia Q, Bečanović K, Drögemöller BI, Semaka A, Nguyen CM, Trost B, Richards F, Bijlsma EK, Squitieri F, Ross CJD, Scherer SW, Eberle MA, Yuen RKC, Hayden MR (2019) Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am J Hum Genet 104(6):1116–1126. https://doi.org/10.1016/j.ajhg.2019.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beecroft SJ, Cortese A, Sullivan R, Yau WY, Dyer Z, Wu TY, Mulroy E, Pelosi L, Rodrigues M, Taylor R, Mossman S, Leadbetter R, Cleland J, Anderson T, Ravenscroft G, Laing NG, Houlden H, Reilly MM, Roxburgh RH (2020) A Māori specific RFC1 pathogenic repeat configuration in CANVAS, likely due to a founder allele. Brain 143(9):2673–2680. https://doi.org/10.1093/brain/awaa203

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, Blair NF, Craufurd D, Priller J, Rickards H, Rosser A, Kordasiewicz HB, Czech C, Swayze EE, Norris DA, Baumann T, Gerlach I, Schobel SA, Paz E, Smith AV, Bennett CF, Lane RM, Phase 1–2a I-HSST (2019) Targeting Huntingtin expression in patients with Huntington’s disease. N Engl J Med 380(24):2307–2316. https://doi.org/10.1056/NEJMoa1900907

    Article  CAS  PubMed  Google Scholar 

  55. Bennett CF, Krainer AR, Cleveland DW (2019) Antisense oligonucleotide therapies for neurodegenerative diseases. Annu Rev Neurosci 42:385–406. https://doi.org/10.1146/annurev-neuro-070918-050501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580. https://doi.org/10.1093/nar/27.2.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu Q, Zhang P, Wang D, Gu W, Wang K (2017) Interrogating the “unsequenceable” genomic trinucleotide repeat disorders by long-read sequencing. Genome Med 9(1):65. https://doi.org/10.1186/s13073-017-0456-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seixas AI, Loureiro JR, Costa C, Ordonez-Ugalde A, Marcelino H, Oliveira CL, Loureiro JL, Dhingra A, Brandao E, Cruz VT, Timoteo A, Quintans B, Rouleau GA, Rizzu P, Carracedo A, Bessa J, Heutink P, Sequeiros J, Sobrido MJ, Coutinho P, Silveira I (2017) A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet 101(1):87–103. https://doi.org/10.1016/j.ajhg.2017.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cen Z, Jiang Z, Chen Y, Zheng X, Xie F, Yang X, Lu X, Ouyang Z, Wu H, Chen S, Yin H, Qiu X, Wang S, Ding M, Tang Y, Yu F, Li C, Wang T, Ishiura H, Tsuji S, Jiao C, Liu C, Xiao J, Luo W (2018) Intronic pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes familial cortical myoclonic tremor with epilepsy type 1. Brain 141(8):2280–2288. https://doi.org/10.1093/brain/awy160

    Article  PubMed  Google Scholar 

  60. LaCroix AJ, Stabley D, Sahraoui R, Adam MP, Mehaffey M, Kernan K, Myers CT, Fagerstrom C, Anadiotis G, Akkari YM, Robbins KM, Gripp KW, Baratela WAR, Bober MB, Duker AL, Doherty D, Dempsey JC, Miller DG, Kircher M, Bamshad MJ, Nickerson DA, University of Washington Center for Mendelian Genomics, Mefford HC, Sol-Church K (2019) GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in Baratela-Scott syndrome. Am J Hum Genet 104(1):35–44. https://doi.org/10.1016/j.ajhg.2018.11.005

    Article  CAS  Google Scholar 

  61. van Kuilenburg ABP, Tarailo-Graovac M, Richmond PA, Drogemoller BI, Pouladi MA, Leen R, Brand-Arzamendi K, Dobritzsch D, Dolzhenko E, Eberle MA, Hayward B, Jones MJ, Karbassi F, Kobor MS, Koster J, Kumari D, Li M, MacIsaac J, McDonald C, Meijer J, Nguyen C, Rajan-Babu IS, Scherer SW, Sim B, Trost B, Tseng LA, Turkenburg M, van Vugt J, Veldink JH, Walia JS, Wang Y, van Weeghel M, Wright GEB, Xu X, Yuen RKC, Zhang J, Ross CJ, Wasserman WW, Geraghty MT, Santra S, Wanders RJA, Wen XY, Waterham HR, Usdin K, van Karnebeek CDM (2019) Glutaminase deficiency caused by short tandem repeat expansion in GLS. N Engl J Med 380(15):1433–1441. https://doi.org/10.1056/NEJMoa1806627

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tian Y, Wang JL, Huang W, Zeng S, Jiao B, Liu Z, Chen Z, Li Y, Wang Y, Min HX, Wang XJ, You Y, Zhang RX, Chen XY, Yi F, Zhou YF, Long HY, Zhou CJ, Hou X, Wang JP, Xie B, Liang F, Yang ZY, Sun QY, Allen EG, Shafik AM, Kong HE, Guo JF, Yan XX, Hu ZM, Xia K, Jiang H, Xu HW, Duan RH, Jin P, Tang BS, Shen L (2019) Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 105(1):166–176. https://doi.org/10.1016/j.ajhg.2019.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, Koike H, Hashiguchi A, Takashima H, Sugiyama H, Kohno Y, Takiyama Y, Maeda K, Doi H, Koyano S, Takeuchi H, Kawamoto M, Kohara N, Ando T, Ieda T, Kita Y, Kokubun N, Tsuboi Y, Katoh K, Kino Y, Katsuno M, Iwasaki Y, Yoshida M, Tanaka F, Suzuki IK, Frith MC, Matsumoto N, Sobue G (2019) Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 51(8):1215–1221. https://doi.org/10.1038/s41588-019-0459-y

    Article  CAS  PubMed  Google Scholar 

  64. Deng J, Yu J, Li P, Luan X, Cao L, Zhao J, Yu M, Zhang W, Lv H, Xie Z, Meng L, Zheng Y, Zhao Y, Gang Q, Wang Q, Liu J, Zhu M, Guo X, Su Y, Liang Y, Liang F, Hayashi T, Maeda MH, Sato T, Ura S, Oya Y, Ogasawara M, Iida A, Nishino I, Zhou C, Yan C, Yuan Y, Hong D, Wang Z (2020) Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am J Hum Genet 106(6):793–804. https://doi.org/10.1016/j.ajhg.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Victorian Government’s Operational Infrastructure Support Program and the National Health and Medical Research Council Independent Research Institute Infrastructure Support Scheme. MFB was supported by a Taking Flight Award from CURE Epilepsy. AT is supported by the Medical Research Council as Clinician Scientist (MR/S006753/1). MB was supported by an Australian National Health and Medical Research Council Senior Research Fellowship (1102971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Tucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bennett, M.F., Tucci, A., Bahlo, M. (2022). Detecting Tandem Repeat Expansions Using Short-Read Sequencing for Clinical Use. In: Proukakis, C. (eds) Genomic Structural Variants in Nervous System Disorders. Neuromethods, vol 182. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2357-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2357-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2356-5

  • Online ISBN: 978-1-0716-2357-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics