Skip to main content

Speed Microscopy: High-Speed Single Molecule Tracking and Mapping of Nucleocytoplasmic Transport

  • Protocol
  • First Online:
The Nuclear Pore Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2502))

Abstract

The nuclear pore complex (NPC) functions as a gateway through which molecules translocate into and out of the nucleus. Understanding the transport dynamics of these transiting molecules and how they interact with the NPC has great potentials in the discovery of clinical targets. Single-molecule microscopy techniques are powerful tools to provide sub–diffraction limit information about the dynamic and structural details of nucleocytoplasmic transport. Here we detail single-point edge-excitation subdiffraction (SPEED) microscopy, a high-speed superresolution microscopy technique designed to track and map proteins and RNAs as they cross native NPCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15(1):607–660

    Article  PubMed  Google Scholar 

  2. Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65(4):570–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maeshima K, Iino H, Hihara S, Funakoshi T, Watanabe A, Nishimura M, Nakatomi R, Yahata K, Imamoto F, Hashikawa T (2010) Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat Struct Mol Biol 17(9):1065

    Article  CAS  PubMed  Google Scholar 

  4. Maimon T, Elad N, Dahan I, Medalia O (2012) The human nuclear pore complex as revealed by cryo-electron tomography. Structure 20(6):998–1006

    Article  CAS  PubMed  Google Scholar 

  5. Maul GG (1977) Nuclear pore complexes. Elimination and reconstruction during mitosis. J Cell Biol 74(2):492–500

    Article  CAS  PubMed  Google Scholar 

  6. Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol 123(4):771–783

    Article  CAS  PubMed  Google Scholar 

  7. Yang W (2013) Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus 4(3):166–175

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bilokapic S, Schwartz TU (2012) 3D ultrastructure of the nuclear pore complex. Curr Opin Cell Biol 24(1):86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chakraborty P, Wang Y, Wei J-H, Van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J (2008) Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 15(5):657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatel G, Fahrenkrog B (2012) Dynamics and diverse functions of nuclear pore complex proteins. Nucleus 3(2):162–171

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757

    Article  CAS  PubMed  Google Scholar 

  12. Goryaynov A, Ma J, Yang W (2011) Single-molecule studies of nucleocytoplasmic transport: from one dimension to three dimensions. Integr Biol 4(1):10–21

    Article  Google Scholar 

  13. Grimaldi MR, Cozzolino L, Malva C, Graziani F, Gigliotti S (2007) nup154 genetically interacts with cup and plays a cell-type-specific function during Drosophila melanogaster egg-chamber development. Genetics 175(4):1751–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoelz A, Debler EW, Blobel G (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643

    Article  CAS  PubMed  Google Scholar 

  15. Köhler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8(10):761

    Article  PubMed  CAS  Google Scholar 

  16. Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11(7):490

    Article  CAS  PubMed  Google Scholar 

  17. Tang S, Presgraves DC (2009) Evolution of the drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science 323(5915):779–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2(10):a000562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim RY, Fahrenkrog B (2006) The nuclear pore complex up close. Curr Opin Cell Biol 18(3):342–347

    Article  CAS  PubMed  Google Scholar 

  20. Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  CAS  PubMed  Google Scholar 

  21. Vasu SK, Forbes DJ (2001) Nuclear pores and nuclear assembly. Curr Opin Cell Biol 13(3):363–375

    Article  CAS  PubMed  Google Scholar 

  22. Lim RY, Huang N-P, Köser J, Deng J, Lau KA, Schwarz-Herion K, Fahrenkrog B, Aebi U (2006) Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci 103(25):9512–9517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miao L, Schulten K (2009) Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17(3):449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Milles S, Lemke EA (2011) Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153. Biophys J 101(7):1710–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR (2004) Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6(3):197

    Article  CAS  PubMed  Google Scholar 

  26. Yang W (2011) 'Natively unfolded'nucleoporins in nucleocytoplasmic transport: clustered or evenly distributed? Nucleus 2(1):10–16

    PubMed  PubMed Central  Google Scholar 

  27. Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, Walter NG, Yang W (2013) High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun 4:2414

    Article  PubMed  CAS  Google Scholar 

  28. Ma J, Yang W (2010) Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci U S A 107(16):7305–7310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129(1):83–96

    Article  CAS  PubMed  Google Scholar 

  30. Shahin V, Danker T, Enss K, Ossig R, Oberleithner H (2001) Evidence for Ca2+−and ATP-sensitive peripheral channels in nuclear pore complexes. FASEB J 15(11):1895–1901

    Article  CAS  PubMed  Google Scholar 

  31. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412–1416

    Article  CAS  PubMed  Google Scholar 

  32. Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112(4):441–451

    Article  CAS  PubMed  Google Scholar 

  33. Arib G, Akhtar A (2011) Multiple facets of nuclear periphery in gene expression control. Curr Opin Cell Biol 23(3):346–353

    Article  CAS  PubMed  Google Scholar 

  34. Baumann K (2010) Beyond pores. Nat Rev Mol Cell Biol 11(3):163–163. https://doi.org/10.1038/nrm2862

    Article  CAS  Google Scholar 

  35. Brown CR, Silver PA (2007) Transcriptional regulation at the nuclear pore complex. Curr Opin Genet Dev 17(2):100–106

    Article  CAS  PubMed  Google Scholar 

  36. Elliot D, Stutz F, Lescure A, Rosbash M (1994) mRNA nuclear transport. Curr Opin Genet Dev 4:305–309

    Article  Google Scholar 

  37. Pascual-Garcia P, Capelson M (2014) Nuclear pores as versatile platforms for gene regulation. Curr Opin Genet Dev 25:110–117

    Article  CAS  PubMed  Google Scholar 

  38. Ptak C, Aitchison JD, Wozniak RW (2014) The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 28:46–53

    Article  CAS  PubMed  Google Scholar 

  39. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199(1):251–263

    Article  CAS  PubMed  Google Scholar 

  40. Malina A, Mills JR, Pelletier J (2012) Emerging therapeutics targeting mRNA translation. Cold Spring Harb Perspect Biol 4(4):a012377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. McIvor RS (2011) Therapeutic delivery of mRNA: the medium is the message. Mol Ther 19(5):822–823

    Article  CAS  PubMed  Google Scholar 

  42. Schlake T, Thess A, Fotin-Mleczek M, Kallen K-J (2012) Developing mRNA-vaccine technologies. RNA Biol 9(11):1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130(3):512–523

    Article  CAS  PubMed  Google Scholar 

  44. Lim RY, Fahrenkrog B, Köser J, Schwarz-Herion K, Deng J, Aebi U (2007) Nanomechanical basis of selective gating by the nuclear pore complex. Science 318(5850):640–643

    Article  CAS  PubMed  Google Scholar 

  45. Peters R (2005) Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6(5):421–427

    Article  CAS  PubMed  Google Scholar 

  46. Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20(6):1320–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9(10):2205–2224

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci 101(35):12887–12892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun C, Yang W, Tu L-C, Musser SM (2008) Single-molecule measurements of importin α/cargo complex dissociation at the nuclear pore. Proc Natl Acad Sci 105(25):8613–8618. https://doi.org/10.1073/pnas.0710867105

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang W, Musser SM (2006) Nuclear import time and transport efficiency depend on importin β concentration. J Cell Biol 174(7):951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dange T, Grunwald D, Grunwald A, Peters R, Kubitscheck U (2008) Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J Cell Biol 183(1):77–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168(2):233–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K, Liphardt JT (2010) Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467(7315):600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Junod SL, Ruba A, Kelich JM, Yang W (2019) Nuclear export of mRNA molecules studied by SPEED microscopy. Methods 153:46–62. https://doi.org/10.1016/j.ymeth.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  55. Schnell SJ, Ma J, Yang W (2014) Three-dimensional mapping of mRNA export through the nuclear pore complex. Genes 5(4):1032–1049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gelles J (2014) Glimpse. Brandeis University

    Google Scholar 

  57. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  58. Herbert A (2013) Single molecule light microscopy ImageJ plugins. University of Sussex

    Google Scholar 

  59. Herbert A (2013) GDSC SMLM. University of Sussex

    Google Scholar 

  60. Deschout H, Neyts K, Braeckmans K (2012) The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J Biophotonics 5(1):97–109. https://doi.org/10.1002/jbio.201100078

    Article  CAS  PubMed  Google Scholar 

  61. Robbins MS, Hadwen BJ (2003) The noise performance of electron multiplying charge-coupled devices. IEEE Trans Electron Devices 50(5):1227–1232. https://doi.org/10.1109/ted.2003.813462

    Article  Google Scholar 

  62. Kelich JM, Ma J, Dong B, Wang Q, Chin M, Magura CM, Xiao W, Yang W (2015) Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol Ther Methods Clin Dev 2:15047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5):377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Quan T, Zeng S, Huang Z (2010) Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. J Biomed Opt 15(6):066005

    Article  PubMed  Google Scholar 

  65. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zuse Institute Berlin TFS (2013) Amira for life & biomedical sciences

    Google Scholar 

  68. Mooney CZ (1997) Monte carlo simulation, vol 116. Sage publications

    Book  Google Scholar 

  69. Mahadevan S (1997) Monte carlo simulation. Marcel Dekker, New York

    Google Scholar 

  70. Ruba A, Luo W, Kelich J, Tingey M, Yang W (2019) 3D tracking-free approach for obtaining 3D super-resolution information in rotationally symmetric biostructures. J Phys Chem B 123(24):5107–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The project was supported by grants from the US National Institutes of Health (GM116204 and GM22552 to W.Y.). S.J.S. is supported by the United States Department of Veterans Affairs VR & E Program. Figures 2, 8, and 3 were created with FigureJ [Mutterer J and Zinck E (2013) Quick-and-clean article figures with FigureJ. Journal of microscopy 252 (1):89-91].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schnell, S.J., Tingey, M., Yang, W. (2022). Speed Microscopy: High-Speed Single Molecule Tracking and Mapping of Nucleocytoplasmic Transport. In: Goldberg, M.W. (eds) The Nuclear Pore Complex. Methods in Molecular Biology, vol 2502. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2337-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2337-4_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2336-7

  • Online ISBN: 978-1-0716-2337-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics