Skip to main content

Physical Mapping of Repeated Sequences on Fish Chromosomes by Fluorescence In Situ Hybridization (FISH)

  • Protocol
  • First Online:
Marine Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2498))

Abstract

The opportunity to map genes and noncoding DNA sequences on the chromosomes by fluorescence in situ hybridization (FISH) has greatly enhanced the potential for fish karyotyping and comparative cytogenetics. The use of FISH allowed for significant advances in our understanding of the fish genome architecture, especially when applied to the study of the repetitive component of the genome, that is generally underestimated in the bioinformatic assembly. Here we provide a step-by-step protocol for FISH of repeated sequences onto chromosomes of fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604. https://doi.org/10.1073/pnas.64.2.600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phillips RB (2007) Application of fluorescence in situ hybridization (FISH) to genome mapping in fishes. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers, Enfield, pp 455–471

    Chapter  Google Scholar 

  3. Phillips RB, Keatley KA, Morasch MR et al (2009) Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genet 10(1):1–11. https://doi.org/10.1186/1471-2156-10-46

    Article  CAS  Google Scholar 

  4. Zhang P, Priebe B (2009) FISH on plant chromosomes. In: Fluorescence in situ hybridization (FISH)—application guide. Springer, Berlin, Heidelberg, pp 365–394. https://doi.org/10.1007/978-3-540-70581-9_32

    Chapter  Google Scholar 

  5. Solinhac R, Leroux S, Galkina S et al (2010) Integrative mapping analysis of chicken microchromosome 16 organization. BMC Genomics 11(1):1–12. https://doi.org/10.1186/1471-2164-11-616

    Article  CAS  Google Scholar 

  6. Abbasi FM, Khan MT, Perveen F et al (2010) Historical perspective of in situ hybridization for the analysis of genomic constitution of plants. Afr J Biotechnol 9(54):9142–9147

    CAS  Google Scholar 

  7. Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chrom Res 27(3):153–165. https://doi.org/10.1007/s10577-019-09607-z

    Article  CAS  PubMed  Google Scholar 

  8. Fortes GG, Bouza C, Viñas A et al (2007) Diversity in isochore structure and chromosome banding in fish. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers, Enfield, pp 405–420

    Chapter  Google Scholar 

  9. Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) (2007) Fish cytogenetics. Science Publishers, Enfield

    Google Scholar 

  10. Mazzuchelli J, Martins C (2009) Genomic organization of repetitive DNAs in the cichlid fish Astronotus ocellatus. Genetica 136(3):461–469. https://doi.org/10.1007/s10709-008-9346-7

    Article  CAS  PubMed  Google Scholar 

  11. Reichwald K, Lauber C, Nanda I et al (2009) High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol 10(2):1–17. https://doi.org/10.1186/gb-2009-10-2-r16

    Article  CAS  Google Scholar 

  12. Majtánová Z, Moy KG, Unmack PJ et al (2019) Characterization of the karyotype and accumulation of repetitive sequences in Australian Darling hardyhead Craterocephalus amniculus (Atheriniformes, Teleostei). PeerJ 7:e7347. https://doi.org/10.7717/peerj.7347

    Article  PubMed  PubMed Central  Google Scholar 

  13. Biscotti MA, Olmo E, Heslop-Harrison JS (2015) Repetitive DNA in eukaryotic genomes. Chromosom Res 23:415–420. https://doi.org/10.1007/s10577-015-9499-z

    Article  CAS  Google Scholar 

  14. Crollius HR, Jaillon O, Dasilva C et al (2000) Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res 10(7):939–949. https://doi.org/10.1101/gr.10.7.939

    Article  PubMed Central  Google Scholar 

  15. Freeman JL, Adeniyi A, Banerjee R et al (2007) Definition of the zebrafish genome using flow cytometry and cytogenetic mapping. BMC Genomics 8(1):1–10. https://doi.org/10.1186/1471-2164-8-195

    Article  CAS  Google Scholar 

  16. Nicodemus-Johnson J, Silic S, Ghigliotti L et al (2011) Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman). Genomics 98(3):194–201. https://doi.org/10.1016/j.ygeno.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  17. Zhuang X, Murphy KR, Ghigliotti L et al (2018) Reconstruction of the repetitive antifreeze glycoprotein genomic loci in the cold-water gadids Boreogadus saida and Microgadus tomcod. Mar Genomics 39:73–84. https://doi.org/10.1016/j.margen.2018.02.003

    Article  PubMed  Google Scholar 

  18. Pisano E, Ghigliotti L (2009) Ribosomal genes in notothenioid fishes: focus on the chromosomal organization. Mar Genomics 2:75–80. https://doi.org/10.1016/j.margen.2009.03.006

    Article  PubMed  Google Scholar 

  19. Gornung E (2013) Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet Genome Res 141(2–3):90–102. https://doi.org/10.1159/000354832

    Article  CAS  PubMed  Google Scholar 

  20. Rebordinos L, Cross I, Merlo A (2013) High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res 141(2–3):103–113. https://doi.org/10.1159/000354871

    Article  CAS  PubMed  Google Scholar 

  21. Sochorová J, Garcia S, Gálvez F et al (2018) Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 127(1):141–150. https://doi.org/10.1007/s00412-017-0651-8

    Article  PubMed  Google Scholar 

  22. Ocalewicz K (2012) Genomic distribution of telomeric DNA sequences—what do we learn from fish about telomere evolution. In: Li B (ed) Reviews on selected topics of telomere biology. InTech, Rijeka, pp 271–294

    Google Scholar 

  23. Auvinet J, Graça P, Ghigliotti L, Pisano E et al (2019) Insertion hot spots of DIRS1 retrotransposon and chromosomal diversifications among the Antarctic Teleosts Nototheniidae. Int J Mol Sci 20:701. https://doi.org/10.3390/ijms20030701

    Article  CAS  PubMed Central  Google Scholar 

  24. Schemberger MO, Nascimento VD, Coan R et al (2019) DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma 128(4):547–560. https://doi.org/10.1007/s00412-019-00721-9

    Article  CAS  PubMed  Google Scholar 

  25. Ghigliotti L, Mazzei F, Ozouf-Costaz C et al (2007) The two giant sister species of the Southern Ocean, Dissostichus eleginoides and Dissostichus mawsoni, differ in karyotype and chromosomal pattern of ribosomal RNA genes. Polar Biol 30:625–634. https://doi.org/10.1007/s00300-006-0222-6

    Article  Google Scholar 

  26. Ijdo JW, Wells RA, Baldini A et al (1991) Improved telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR. Nucleic Acids Res 19(17):4780

    Article  CAS  Google Scholar 

  27. Ghigliotti L, Cheng CHC, Ozouf-Costaz C et al (2020) Cytogenetic characterization of the Antarctic silverfish Pleuragramma antarctica (Boulenger 1902) through analysis of mitotic chromosomes from early larvae. Mar Genomics 52:100737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Ghigliotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ghigliotti, L., Auvinet, J., Pisano, E. (2022). Physical Mapping of Repeated Sequences on Fish Chromosomes by Fluorescence In Situ Hybridization (FISH). In: Verde, C., Giordano, D. (eds) Marine Genomics. Methods in Molecular Biology, vol 2498. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2313-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2313-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2312-1

  • Online ISBN: 978-1-0716-2313-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics