Skip to main content

Analysis of Phytochrome-Dependent Seed Germination in Arabidopsis

  • Protocol
  • First Online:
Environmental Responses in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2494))

  • 1332 Accesses

Abstract

Light-dependent seed germination guarantees seedling proximity to the soil surface, enabling quick photosynthetic energy supply. While seedling hypocotyl length is mainly used in phytochrome physiological assays to determine the functional impact of photoreceptor point mutations, different intracellular localizations, or the function of signal transduction components, phytochrome-controlled seed germination offers a different, very sensitive tool to test the phytochrome photoreceptor network. Photon fluences as low as 1 nmol m−2 are sufficient to elicit the phytochrome A (phyA)-dependent very low fluence response (VLFR), whereas higher fluences (> 10 μmol m−2) are needed to elicit the phyB-controlled and phyB-photoreversible low fluence response (LFR). Taking advantage of the different sensitivities of both phytochromes to different light qualities and quantities, a screening protocol is presented to score germination under different light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaiserli E, Jenkins GI (2007) UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19:2662–2673

    Article  CAS  Google Scholar 

  2. Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  Google Scholar 

  3. Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496

    Article  CAS  Google Scholar 

  4. Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691

    Article  CAS  Google Scholar 

  5. Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 15:33–62

    Article  CAS  Google Scholar 

  6. Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol 56:401–413

    Article  CAS  Google Scholar 

  7. Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  Google Scholar 

  8. Flint LH, McAlister ED (1935) Wave lengths of radiation in the visible spectrum inhibiting the germination of light-sensitive lettuce seed. Smithson Misc Collect 94:1–11

    Google Scholar 

  9. Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci U S A 38:662–666

    Article  CAS  Google Scholar 

  10. Lagarias JC, Lagarias DM (1989) Self-assembly of synthetic phytochrome holoprotein in vitro. Proc Natl Acad Sci U S A 86:5778–5780

    Article  CAS  Google Scholar 

  11. Litts JC, Kelly JM, Lagarias JC (1983) Structure-function studies on phytochrome. Preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species. J Biol Chem 258:11025–11031

    Article  CAS  Google Scholar 

  12. Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  CAS  Google Scholar 

  13. Smith H (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407:585–591

    Article  CAS  Google Scholar 

  14. Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    Article  CAS  Google Scholar 

  15. Clough RC, Vierstra RD (1997) Phytochrome degradation. Plant Cell Environ 20:713–721

    Article  CAS  Google Scholar 

  16. Sharrock RA, Clack T (2002) Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol 130:442–456

    Article  CAS  Google Scholar 

  17. Helizon H, Rösler-Dalton J, Gasch P, von Horsten S, Essen L-O, Zeidler M (2018) Arabidopsis phytochrome a nuclear translocation is mediated by a far-red elongated hypocotyl 1–importin complex. Plant J 96:1255–1268

    Article  CAS  Google Scholar 

  18. Rösler J, Jaedicke K, Zeidler M (2010) Cytoplasmic phytochrome action. Plant Cell Physiol 51:1248–1254

    Article  Google Scholar 

  19. Rösler J, Klein I, Zeidler M (2007) Arabidopsis fhl/fhy1 double mutant reveals a distinct cytoplasmic action of phytochrome A. Proc Natl Acad Sci U S A 104:10737–10742

    Article  Google Scholar 

  20. Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  CAS  Google Scholar 

  21. Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:8129–8133

    Article  CAS  Google Scholar 

  22. Shinomura T, Uchida K, Furuya M (2000) Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol 122:147–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG grant ZE485/2-3 to MZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Zeidler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zeidler, M. (2022). Analysis of Phytochrome-Dependent Seed Germination in Arabidopsis. In: Duque, P., Szakonyi, D. (eds) Environmental Responses in Plants. Methods in Molecular Biology, vol 2494. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2297-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2297-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2296-4

  • Online ISBN: 978-1-0716-2297-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics