Skip to main content

Identification of Taxonomically Restricted Transcripts from Illumina RNA Sequencing Data

  • Protocol
  • First Online:
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2477))

Abstract

In order to perform a well-balanced comparative transcriptomic analysis, the reference genome and annotations for all species included in the comparison must be of a similar quality and completeness. Frequently, comparative transcriptomic analyses include non-model organisms whose annotations are not as well curated; this inequality can lead to biases.

To avoid potential biases stemming from incomplete annotations, a comparative transcriptomic analysis can incorporate de novo transcriptome assemblies for each species, which reduces this disparity. This chapter covers all of the steps which are necessary to run a comparative transcriptomic analysis with de novo transcriptome assemblies, from the first step of the experimental design to the sequencing, and ultimately the bioinformatic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wohlbach DJ, Thompson DA, Gasch AP, Regev A (2009) From elements to modules: regulatory evolution in Ascomycota fungi. Curr Opin Genet Dev 19:571–578. https://doi.org/10.1016/j.gde.2009.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brion C, Lutz SM, Albert FW (2020) Simultaneous quantification of mrna and protein in single cells reveals post-transcriptional effects of genetic variation. Elife 9:1–34. https://doi.org/10.7554/eLife.60645

    Article  Google Scholar 

  3. Blevins WR, Ruiz-Orera J, Messeguer X et al (2021) Uncovering de novo gene birth in yeast using deep transcriptomics. Nat Commun 12:604. https://doi.org/10.1038/s41467-021-20911-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gasch AP (2007) Comparative genomics of the environmental stress response in ascomycete fungi. Yeast. 24:961–976. https://doi.org/10.1002/yea.1512

    Article  CAS  PubMed  Google Scholar 

  5. Tsankov AM, Thompson DA, Socha A et al (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8:e1000414. https://doi.org/10.1371/journal.pbio.1000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andrews S, Krueger F, Segonds-Pichon A et al (2010) FASTQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, pp 5–9

    Google Scholar 

  8. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wingett SW, Andrews S (2018) Fastq screen: A tool for multi-genome mapping and quality control [version 1; referees: 3 approved, 1 approved with reservations]. F1000Res 7:1–13. https://doi.org/10.12688/f1000research.15931.1

    Article  Google Scholar 

  10. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grabherr MG, Brian JH, Moran YJ, Levin Z, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F, Birren BW, Friedman N, Regev A (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883.Trinity

    Article  Google Scholar 

  12. Smith-Unna R, Boursnell C, Patro R et al (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:1134–1144. https://doi.org/10.1101/gr.196469.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875. https://doi.org/10.1093/bioinformatics/bti310

    Article  CAS  PubMed  Google Scholar 

  14. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578. https://doi.org/10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Patro R, Duggal G, Love MI et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. https://doi.org/10.1038/nmeth.4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:1–9. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  Google Scholar 

  17. Treangen TJ, Messeguer X (2006) M-GCAT: interactively and efficiently constructing large-scale multiple genome comparison frameworks in closely related species. BMC Bioinformatics 7:433. https://doi.org/10.1186/1471-2105-7-433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blevins WR, Carey LB, Mar AM (2019) Transcriptomics data of 11 species of yeast identically grown in rich media and oxidative stress conditions. BMC Res Notes 12:250. https://doi.org/10.1186/s13104-019-4286-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moyers BA, Zhang J (2018) Toward reducing phylostratigraphic errors and biases. Genome Biol Evol 10:2037–2048. https://doi.org/10.1093/gbe/evy161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weisman CM, Murray AW, Eddy SR (2020) Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol 18:1–24. https://doi.org/10.1371/journal.pbio.3000862

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by several grants including PGC2018- 094091-B-I00, BFU2015-65235-P, BFU2015-68351-P, BFU2016-80039-R, TIN2015-69175-C4-3-R, and RTI2018-094403-B-C33 from the Spanish Government FEDER (EU), as well as PT17/0009/0014 from the Instituto de Salud Carlos III. We also received support from grants 014SGR1121, 2014SGR0974, 2017SGR1054, and 2017SGR01020 from the Agència de Gestió d’Ajuts Universitaris i de Recerca Generalitat de Catalunya (AGAUR), and MDM-2014-0370 from the “Maria de Maeztu” Program for Units of Excellence in R&D.

We would like to thank Dr. Ksenia Pugach and the Verstrepen lab for donating cultures of several species of yeast. We also thank the sequencing facilities of the Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra (UPF) for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Blevins .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data S1

(ODT 20 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Blevins, W.R. (2022). Identification of Taxonomically Restricted Transcripts from Illumina RNA Sequencing Data. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 2477. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2257-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2257-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2256-8

  • Online ISBN: 978-1-0716-2257-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics