Skip to main content

GWAS Case Studies in Wheat

  • Protocol
  • First Online:
Genome-Wide Association Studies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2481))

Abstract

With the advancements in next-generation sequencing technologies, leading to millions of single nucleotide polymorphisms in all crop species including wheat, genome-wide association study (GWAS) has become a leading approach for trait dissection. In wheat, GWAS has been conducted for a plethora of traits and more and more studies are being conducted and reported in journals. While application of GWAS has become a routine in wheat using the standardized approaches, there has been a great leap forward using newer models and combination of GWAS with other sets of data. This chapter has reviewed all these latest advancements in GWAS in wheat by citing the most important studies and their outputs. Specially, we have focused on studies that conducted meta-GWAS, multilocus GWAS, haplotype-based GWAS, Environmental- and Eigen-GWAS, and/or GWAS combined with gene regulatory network and pathway analyses or epistatic interactions analyses; all these have taken the association mapping approach to new heights in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganal MW, Polley A, Graner EM et al (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37:821–828

    Article  CAS  PubMed  Google Scholar 

  2. You Q, Yang X, Peng Z et al (2019) Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci 6(9):104

    Google Scholar 

  3. Poland JA, Brown PJ, Sorrells ME et al (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang SC, Wong D, Forrest K et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou S, Zhang J, Che Y et al (2018) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotech J 16:818–827

    Article  CAS  Google Scholar 

  7. Rasheed A, Xia X (2019) From markers to genome-based breeding in wheat. Theor Appl Genet 132:767–784

    Article  CAS  PubMed  Google Scholar 

  8. Sehgal D, Autrique E, Singh RP et al (2017) Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci Rep 7:41578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sehgal D, Mondal S, Guzman C et al (2019) Validation of candidate gene-based markers and identification of novel loci for thousand-grain weight in spring bread wheat. Front Plant Sci 10:1189

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sehgal D, Rosyara U, Mondal S et al (2020a) Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat. Front Plant Sci 11:197

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sehgal D, Mondal S, Crespo-Herrera L et al (2020b) Haplotype-based, genome-wide association study reveals stable genomic regions for grain yield in CIMMYT spring bread wheat. Front Genet 3(11):589490

    Article  CAS  Google Scholar 

  12. Sehgal D, Vikram P, Sansaloni CP et al (2015) Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS One 10:e0132112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sansaloni C, Franco J, Santos B et al (2020) Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat Commun 11:4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta PK, Balyan HS et al (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7:5

    Article  CAS  Google Scholar 

  15. Tshikunde NM, Mashilo J, Shimelis H et al (2019) Agronomic and physiological traits, and associated quantitative trait loci (qtl) affecting yield response in wheat (Triticum aestivum L.): a review. Front Plant Sci 10(1428)

    Google Scholar 

  16. Mondal S, Sallam A, Sehgal D et al (2021) In: Kole C (ed) Genomic designing for abiotic stress resistant cereal crops. Springer Nature, Cham, p XXX

    Google Scholar 

  17. Hussain B, Akpınar BA, Alaux M et al (2021) Wheat genomics and breeding: bridging the gap. AgriRxiv, pp 57, pp ref. 296

  18. Evangelou E, Ioannidis JPA (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14:379–389

    Article  CAS  PubMed  Google Scholar 

  19. Bolormaa S, Pryce JE, Reverter A et al (2014) A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet 10:e1004198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Battenfield SD, Sheridan JL, Silva LDCE et al (2018) Breeding-assisted genomics: applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS One 13:e0204757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Acuña-Galindo MA, Mason RE, Subramanian NK et al (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Article  Google Scholar 

  22. Griffiths S, Simmonds J, Leverington M et al (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    Article  CAS  PubMed  Google Scholar 

  23. Soriano JM, Alvaro F (2019) Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 9:10537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang SB, Feng JY, Ren WL et al (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Feng J, Ni Y et al (2017) pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity 118(6):517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamba CL, Zhang YM (2018) A fast mrMLM algorithm for multi-locus genome-wide association studies. BioRxiv 341784

    Google Scholar 

  27. Jaiswal V, Gahlaut V, Meher PK et al (2016) Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat (T. aestivum L.). PLoS One 11(7):e0159343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kumar J, Saripalli G, Gahlaut V et al (2018) Genetics of Fe, Zn, β-carotene, GPC and yield traits in bread wheat (Triticum aestivum L.) using multi-locus and multi-traits GWAS. Euphytica 214:219

    Article  CAS  Google Scholar 

  29. Chaurasia S, Singh AK, Songachan LS et al (2020) Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 112(6):4608–4621

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Chai Y, Zhang X et al (2020) Multi-locus gwas of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Front Plant Sci 11:1091

    Article  PubMed  PubMed Central  Google Scholar 

  31. Safdar LB, Andleeb T, Latif S et al (2020) Genome-wide association study and qtl meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Front Plant Sci 11:70

    Article  PubMed  PubMed Central  Google Scholar 

  32. Muhammad A, Li J, Hu W et al (2021) Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using different GWAS models. Sci Rep 11:6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thrash A, Tang JD, DeOrnellis M et al (2020) PAST: the pathway association studies tool to infer biological meaning from GWAS datasets. Plan Theory 9:58

    Google Scholar 

  34. Alqudah A, Haile J, Alomari D et al (2020) Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat. Sci Rep 10:2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Behrouzi P, Arends D, Wit EC (2017) Netgwas: an R package for network-based genome-wide association studies. arXiv:1710.01236

    Google Scholar 

  36. Li L, Peng Z, Mao X et al (2019) Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann Bot 124(6):993–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manolio T, Collins F, Cox N et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reif JC, Maurer HP, Korzun V et al (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283

    Article  PubMed  Google Scholar 

  39. Muqaddasi QH, Brassac J, Ebmeyer E et al (2020) Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci Rep 10:12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sehgal D, Dreisigacker S (2019) Haplotypes-based genetic analysis: benefits and challenges. Vav J Genet Breed 23:803–808

    Article  Google Scholar 

  41. Singh S, Vikram P, Sehgal D et al (2018) Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Sci Rep 8:12527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li F, Wen W, Liu J et al (2019) Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol 19:168

    Article  PubMed  PubMed Central  Google Scholar 

  43. Afzal F, Li H, Gul Kazi A et al (2019) Genome-wide analyses reveal footprints of divergent selection and drought adaptive traits in synthetic-derived wheats. G3 (Bethesda) 9:1957–1973

    Article  CAS  PubMed Central  Google Scholar 

  44. Shokat S, Sehgal D, Fulai L et al (2020) GWAS analysis of wheat pre-breeding germplasm for terminal drought stress using next generation sequencing technology. Int J Mol Sci 21:3156

    Article  PubMed Central  Google Scholar 

  45. Yu S, Wu J, Wang M et al (2020) Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J 8:1011–1024

    Article  Google Scholar 

  46. Hu P, Zheng Q, Luo Q et al (2021) Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol 21:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. N’Diaye A, Haile JK, Cory AT et al (2017) Single marker and haplotype-based association analysis of semolina and pasta colour in elite durum wheat breeding lines using a high-density consensus map. PLoS One 12:e0170941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ledesma-Ramírez L, Solís-Moya E, Iturriaga G et al (2019) GWAS to identify genetic loci for resistance to yellow rust in wheat pre-breeding lines derived from diverse exotic crosses. Front Plant Sci 10:1390

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vikram P, Sehgal D, Sharma A et al (2021) Genome-wide association analysis of Mexican bread wheat landraces for resistance to yellow and stem rust, PLoS One. 6(1):e0246015

    Google Scholar 

  50. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  51. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen GB, Lee SH, Zhu ZX et al (2016) EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations. Heredity 117(1):51–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharma R, Cockram J, Gardner K et al (2020) Trends of genetic changes uncovered by Env- and Eigen-GWAS in wheat and barley. https://doi.org/10.1101/2020.11.27.400333

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepmala Sehgal or Susanne Dreisigacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sehgal, D., Dreisigacker, S. (2022). GWAS Case Studies in Wheat. In: Torkamaneh, D., Belzile, F. (eds) Genome-Wide Association Studies. Methods in Molecular Biology, vol 2481. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2237-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2237-7_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2236-0

  • Online ISBN: 978-1-0716-2237-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics