Skip to main content

Single-Molecule Optical Tweezers Study of Protein–Membrane Interactions

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2473))

  • 1489 Accesses

Abstract

Numerous proteins directly or indirectly bind membranes to exert their roles in a wide variety of biological processes. Such membrane binding often occurs in the presence of an external mechanical force. It remains challenging to quantify these interactions using traditional experimental approaches based on a large number of molecules, due to ensemble averaging or the lack of mechanical force. Here we described a new single-molecule approach based on high-resolution optical tweezers to characterize protein–membrane interactions. A single membrane binding protein is attached to the lipid bilayer coated on a silica bead via a flexible polypeptide linker, tethered to another bead via a long DNA handle, and pulled away from the bilayer using optical tweezers. Dynamic protein binding and unbinding is detected by the corresponding changes in the extension of the protein-DNA tether with high spatiotemporal resolution, which reveals the membrane binding affinity, kinetics, and intermediates. We demonstrated the method using C2 domains of extended synaptotagmin 2 (E-Syt2) with a detailed protocol. The method can be widely applied to investigate complex protein–membrane interactions under well-controlled experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Das DK, Feng Y, Mallis RJ, Li X, Keskin DB, Hussey RE, Brady SK, Wang JH, Wagner G, Reinherz EL, Lang MJ (2015) Force-dependent transition in the T-cell receptor beta-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A 112:1517–1522

    Article  CAS  Google Scholar 

  2. Cho WH, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151

    Article  CAS  Google Scholar 

  3. Wang XF, Ha T (2013) Defining single molecular forces required to activate integrin and notch signaling. Science 340:991–994

    Article  CAS  Google Scholar 

  4. Brunger AT, Choi UB, Lai Y, Leitz J, White KI, Zhou Q (2019) The pre-synaptic fusion machinery. Curr Opin Struct Biol 54:179–188

    Article  CAS  Google Scholar 

  5. Brose N, Brunger A, Cafiso D, Chapman ER, Diao J, Hughson FM, Jackson MB, Jahn R, Lindau M, Ma C, Rizo J, Shin YK, Sollner TH, Tamm L, Yoon TY, Zhang YL (2019) Synaptic vesicle fusion: today and beyond. Nat Struct Mol Biol 26:663–668

    Article  CAS  Google Scholar 

  6. Baker RW, Hughson FM (2016) Chaperoning SNARE assembly and disassembly. Nat Rev Mol Cell Biol 17:465–479

    Article  CAS  Google Scholar 

  7. Yu HJ, Liu YH, Gulbranson DR, Paine A, Rathore SS, Shen JS (2016) Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites. Proc Natl Acad Sci U S A 113:4362–4367

    Article  CAS  Google Scholar 

  8. Saheki Y, De Camilli P (2017) Endoplasmic reticulum-plasma membrane contact sites. Annu Rev Biochem 86:659–684

    Article  CAS  Google Scholar 

  9. Reinisch KM, De Camilli P (2016) SMP-domain proteins at membrane contact sites: structure and function. Biochim Biophys Acta 1861:924–927

    Article  CAS  Google Scholar 

  10. Bian X, Zhang Z, Xiong QC, De Camilli P, Lin CX (2019) A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat Chem Biol 15:830

    Article  CAS  Google Scholar 

  11. Yu H, Siewny MGW, Edwards DT, Sanders AW, Perkins TT (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355:945–949

    Article  CAS  Google Scholar 

  12. Choi HK, Min D, Kang H, Shon MJ, Rah SH, Kim HC, Jeong H, Choi HJ, Bowie JU, Yoon TY (2019) Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science 366:1150–1156

    Article  CAS  Google Scholar 

  13. Popot JL, Engelman DM (2016) Membranes do not tell proteins how to fold. Biochemistry 55:5–18

    Article  CAS  Google Scholar 

  14. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  CAS  Google Scholar 

  15. Corbalan-Garcia S, Gomez-Fernandez JC (2014) Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta 1838:1536–1547

    Article  CAS  Google Scholar 

  16. Saheki Y, De Camilli P (2017) The extended-synaptotagmins. Biochim Biophys Acta 1864:1490–1493

    Article  CAS  Google Scholar 

  17. Ma L, Cai Y, Li Y, Jiao J, Wu Z, O'Shaughnessy B, De Camilli P, Karatekin E, Zhang YL (2017) Single-molecule force spectroscopy of protein-membrane interactions. eLife 6:e30493

    Article  Google Scholar 

  18. Perez-Lara A, Thapa A, Nyenhuis SB, Nyenhuis DA, Halder P, Tietzel M, Tittmann K, Cafiso DS, Jahn R (2016) PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. eLife 5:e15886

    Article  Google Scholar 

  19. Schauder CM, Wu XD, Saheki Y, Narayanaswamy P, Torta F, Wenk MR, De Camilli P, Reinisch KM (2014) Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510:552–555

    Article  CAS  Google Scholar 

  20. Min SW, Chang WP, Sudhof TC (2007) E-Syts, a family of membranous Ca2+-sensor proteins with multiple C2 domains. Proc Natl Acad Sci U S A 104:3823–3828

    Article  CAS  Google Scholar 

  21. Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P (2013) PI(4,5)P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153:1494–1509

    Article  CAS  Google Scholar 

  22. Xu JJ, Bacaj T, Zhou A, Tomchick DR, Sudhof TC, Rizo J (2014) Structure and Ca2+-binding properties of the tandem C2 domains of E-Syt2. Structure 22:269–280

    Article  CAS  Google Scholar 

  23. Zhang YL, Sirinakis G, Gundersen G, Xi ZQ, Gao Y (2012) DNA translocation of ATP-dependent chromatin remodelling factors revealed by high-resolution optical tweezers. Methods Enzymol 513:3–28

    Article  CAS  Google Scholar 

  24. Zhang YL, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, Cairns BR, Peterson CL, Bustamante C (2006) DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell 24:559–568

    Article  CAS  Google Scholar 

  25. Ma L, Jiao J, Zhang YL (2019) Single-molecule optical tweezers study of regulated SNARE assembly. Methods Mol Biol 1860:95–114

    Article  CAS  Google Scholar 

  26. Sirinakis G, Ren YX, Gao Y, Xi ZQ, Zhang YL (2012) Combined and versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev Sci Instrum 83:093708

    Article  Google Scholar 

  27. Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103:9006–9011

    Article  CAS  Google Scholar 

  28. Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9

    Article  CAS  Google Scholar 

  29. Zhang XM, Ma L, Zhang YL (2013) High-resolution optical tweezers for single-molecule manipulation. Yale J Biol Med 86:367–383

    PubMed  PubMed Central  Google Scholar 

  30. Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Direct observation of the three-state folding of a single protein molecule. Science 309:2057–2060

    Article  CAS  Google Scholar 

  31. Cecconi C, Shank EA, Marqusee S, Bustamante C (2011) DNA molecular handles for single-molecule protein-folding studies by optical tweezers. DNA Nanotechnol Method Protoc 749:255–271

    Article  CAS  Google Scholar 

  32. Gao Y, Zorman S, Gundersen G, Xi ZQ, Ma L, Sirinakis G, Rothman JE, Zhang YL (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–1343

    Article  CAS  Google Scholar 

  33. Gao Y, Sirinakis G, Zhang YL (2011) Highly anisotropic stability and folding kinetics of a single coiled coil protein under mechanical tension. J Am Chem Soc 133:12749–12757

    Article  CAS  Google Scholar 

  34. Petrache HI, Dodd SW, Brown MF (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J 79:3172–3192

    Article  CAS  Google Scholar 

  35. Jiao JY, Rebane AA, Ma L, Zhang YL (2017) Single-molecule protein folding experiments using high-resolution optical tweezers. Methods Mol Biol 1486:357–390

    Article  CAS  Google Scholar 

  36. Zhang YL, Jiao J, Rebane AA (2016) Hidden Markov modeling with detailed balance and its application to single protein folding. Biophys J 111:2110–2124

    Article  CAS  Google Scholar 

  37. Rabiner LR (1989) A tutorial on hidden Markov-models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  38. Rebane AA, Ma L, Zhang YL (2016) Structure-based derivation of protein folding intermediates and energies from optical tweezers. Biophys J 110:441–454

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R35GM131714, R01GM093341, and R01GM120193 to Y. Z. and by the National Natural Science Foundation of China grant 31770812 to L. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, L., Ge, J., Bian, X., Zhang, Y. (2022). Single-Molecule Optical Tweezers Study of Protein–Membrane Interactions. In: Shen, J. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 2473. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2209-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2209-4_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2208-7

  • Online ISBN: 978-1-0716-2209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics