Skip to main content

Recombinant Modified Vaccinia Virus Ankara Development to Express VP2, NS1, and VP7 Proteins of Bluetongue Virus

  • Protocol
  • First Online:
Vaccine Technologies for Veterinary Viral Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2465))

Abstract

Modified vaccinia virus Ankara (MVA) is employed widely as an experimental vaccine vector for its abortive replication in mammalian cells and high expression level of foreign/heterologous genes. Recombinant MVAs (rMVAs) are used as platforms for protein production as well as vectors to generate vaccines against a wide range of infectious diseases and other pathologies. The portrait of the virus combines desirable elements such as high-level biological safety, the ability to activate appropriate innate immune mediators upon vaccination , and the capacity to deliver substantial amounts of heterologous antigens. rMVAs encoding proteins of Bluetongue virus (BTV), an orbivirus that infects domestic and wild ruminants through transmission by biting midges of the Culicoides species, are excellent vaccine candidates against this virus. In this chapter, we describe the methods for the generation of rMVAs encoding VP2, NS1, and VP7 proteins of BTV . The included protocols cover the cloning of VP2, NS1, and VP7 BTV-4 genes in a transfer plasmid, the construction of rMVAs, the titration of virus working stocks, and the protein expression analysis by immunofluorescence and radiolabeling of rMVA infected cells as well as virus purification procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sutter G, Staib C (2003) Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr Drug Targets Infect Disord 3:263–271. https://doi.org/10.2174/1568005033481123

    Article  CAS  PubMed  Google Scholar 

  2. Antoine G, Scheiflinger F, Dorner F et al (1998) The complete genomic sequence of the modified vaccinia ankara strain: comparison with other orthopoxviruses. Virology 244:365–396. https://doi.org/10.1006/viro.1998.9123

    Article  CAS  PubMed  Google Scholar 

  3. Esteban M (2009) Attenuated poxvirus vectors MVA and NYVAC as promising vaccine candidates against HIV/AIDS. Hum Vaccin 5:867–871. https://doi.org/10.4161/hv.9693

    Article  CAS  PubMed  Google Scholar 

  4. Calvo-Pinilla E, Castillo-Olivares J, Jabbar T et al (2014) Recombinant vaccines against bluetongue virus. Virus Res 182:78–86. https://doi.org/10.1016/j.virusres.2013.11.013

    Article  CAS  PubMed  Google Scholar 

  5. García-Arriaza J, Esteban M (2014) Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 10:2235–2244. https://doi.org/10.4161/hv.28974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramírez JC, Gherardi MM, Esteban M (2000) Biology of attenuated modified vaccinia virus ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western reserve strain and advantages as a vaccine. J Virol 74:923–933

    Article  Google Scholar 

  7. Volz A, Sutter G (2017) Modified vaccinia virus ankara. Adv Virus Res 97:187–243. https://doi.org/10.1016/bs.aivir.2016.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Le Bon A, Durand V, Kamphuis E et al (2006) Direct stimulation of T cells by type I IFN enhances the CD8+ T cell response during cross-priming. J Immunol 176:4682–4689. https://doi.org/10.4049/jimmunol.176.8.4682

    Article  PubMed  Google Scholar 

  9. Tough DF (2004) Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk Lymphoma 45:257–264. https://doi.org/10.1080/1042819031000149368

    Article  CAS  PubMed  Google Scholar 

  10. Hernáez B, Alonso-Lobo JM, Montanuy I et al (2018) A virus-encoded type I interferon decoy receptor enables evasion of host immunity through cell-surface binding. Nat Commun 9:e7772. https://doi.org/10.1038/s41467-018-07772-z

    Article  CAS  Google Scholar 

  11. Perdiguero B, Esteban M (2009) The interferon system and vaccinia virus evasion mechanisms. J Interf Cytokine Res 29:581–598. https://doi.org/10.1089/jir.2009.0073

    Article  CAS  Google Scholar 

  12. Smith GL, Benfield CTO, Maluquer de Motes C et al (2013) Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol 94:2367–2392. https://doi.org/10.1099/vir.0.055921-0

    Article  CAS  PubMed  Google Scholar 

  13. Marín-López A, Barreiro-Piñeiro N, Utrilla-Trigo S et al (2020) Cross-protective immune responses against African horse sickness virus after vaccination with protein NS1 delivered by avian reovirus muNS microspheres and modified vaccinia virus Ankara. Vaccine 38:882–889. https://doi.org/10.1016/j.vaccine.2019.10.087

    Article  CAS  PubMed  Google Scholar 

  14. Calvo-Pinilla E, Gubbins S, Mertens P et al (2018) The immunogenicity of recombinant vaccines based on modified Vaccinia Ankara (MVA) viruses expressing African horse sickness virus VP2 antigens depends on the levels of expressed VP2 protein delivered to the host. Antivir Res 154:132–139. https://doi.org/10.1016/j.antiviral.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  15. Alberca B, Bachanek-Bankowska K, Cabana M et al (2014) Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge. Vaccine 32:3670–3674. https://doi.org/10.1016/j.vaccine.2014.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Poza F, Marín-López A, Castillo-Olivares J et al (2015) Identification of CD8 T cell epitopes in VP2 and NS1 proteins of African horse sickness virus in IFNAR(−/−) mice. Virus Res 210:149–153. https://doi.org/10.1016/j.virusres.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  17. Chakrabarti S, Brechling K, Moss B (1985) Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5:3403–3409

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Utrilla-Trigo S, Jiménez-Cabello L, Alonso-Ravelo R et al (2020) Heterologous combination of ChAdOx1 and MVA vectors expressing protein NS1 as vaccination strategy to induce durable and cross-protective CD8+ T cell immunity to bluetongue virus. Vaccine 8:346. https://doi.org/10.3390/vaccines8030346

    Article  CAS  Google Scholar 

  19. Marín-López A, Calvo-Pinilla E, Barriales D et al (2018) CD8 T cell responses to an immunodominant epitope within the nonstructural protein NS1 provide wide immunoprotection against bluetongue virus in IFNAR −/− mice. J Virol 92:e00938-18. https://doi.org/10.1128/JVI.00938-18

    Article  PubMed  PubMed Central  Google Scholar 

  20. Calvo-Pinilla E, de la Poza F, Gubbins S et al (2014) Vaccination of mice with a modified vaccinia ankara (MVA) virus expressing the African horse sickness virus (AHSV) capsid protein VP2 induces virus neutralising antibodies that confer protection against AHSV upon passive immunisation. Virus Res 180:23–30. https://doi.org/10.1016/j.virusres.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Ortego J, de la Poza F, Marín-López A (2014) Interferon α/β receptor knockout mice as a model to study bluetongue virus infection. Virus Res 182:35–42. https://doi.org/10.1016/j.virusres.2013.09.038

    Article  CAS  PubMed  Google Scholar 

  22. de la Poza F, Calvo-Pinilla E, López-Gil E et al (2013) Ns1 is a key protein in the vaccine composition to protect Ifnar(−/−) mice against infection with multiple serotypes of African horse sickness virus. PLoS One 8:e70197. https://doi.org/10.1371/journal.pone.0070197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jabbar TK, Calvo-Pinilla E, Mateos F et al (2013) Protection of IFNAR (−/−) mice against bluetongue virus serotype 8, by heterologous (DNA/rMVA) and homologous (rMVA/rMVA) vaccination, expressing outer-capsid protein VP2. PLoS One 8:e60574. https://doi.org/10.1371/journal.pone.0060574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calvo-Pinilla E, Navasa N, Anguita J et al (2012) Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus. PLoS One 7:e34735. https://doi.org/10.1371/journal.pone.0034735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Calvo-Pinilla E, Rodríguez-Calvo T, Sevilla N et al (2009) Heterologous prime boost vaccination with DNA and recombinant modified vaccinia virus Ankara protects IFNAR(−/−) mice against lethal bluetongue infection. Vaccine 28:437–445. https://doi.org/10.1016/j.vaccine.2009.10.027

    Article  CAS  PubMed  Google Scholar 

  26. Jiménez-Cabello L, Utrilla-Trigo S, Calvo-Pinilla E et al (2021) Viral vector vaccines against bluetongue virus. Microorganisms 9:42. https://doi.org/10.3390/microorganisms9010042

    Article  CAS  Google Scholar 

  27. Calvo-Pinilla E, Marín-López A, Moreno S et al (2020) A protective bivalent vaccine against Rift valley fever and bluetongue. Vaccine 5:1–12. https://doi.org/10.1038/s41541-020-00218-y

    Article  CAS  Google Scholar 

  28. Marín-López A, Calvo-Pinilla E, Barriales D et al (2017) Microspheres-prime/rMVA-boost vaccination enhances humoral and cellular immune response in IFNAR(−/−) mice conferring protection against serotypes 1 and 4 of bluetongue virus. Antivir Res 142:55–62. https://doi.org/10.1016/j.antiviral.2017.03.010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ortego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marín-López, A., Utrilla-Trigo, S., Jiménez-Cabello, L., Ortego, J. (2022). Recombinant Modified Vaccinia Virus Ankara Development to Express VP2, NS1, and VP7 Proteins of Bluetongue Virus. In: Brun, A. (eds) Vaccine Technologies for Veterinary Viral Diseases. Methods in Molecular Biology, vol 2465. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2168-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2168-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2167-7

  • Online ISBN: 978-1-0716-2168-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics