Skip to main content

An Overview of Veterinary Viral Diseases and Vaccine Technologies

  • Protocol
  • First Online:
Vaccine Technologies for Veterinary Viral Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2465))

Abstract

Ensuring the maximum standards of quality and welfare in animal production requires developing effective tools to halt and prevent the spread of the high number of infectious diseases affecting animal husbandry. Many of these diseases are caused by pathogens of viral etiology. To date, one of the best strategies is to implement preventive vaccination policies whenever possible. However, many of the currently manufactured animal vaccines still rely in classical vaccine technologies (killed or attenuated vaccines). Under some circumstances, these vaccines may not be optimal in terms of safety and immunogenicity, nor adequate for widespread application in disease-free countries at risk of disease introduction. One step ahead is needed to improve and adapt vaccine manufacturing to the use of new generation vaccine technologies already tested in experimental settings. In the context of viral diseases of veterinary interest, we overview current vaccine technologies that can be approached, with a brief insight in the type of immunity elicited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grossi G, Goglio P, Vitali A et al (2019) Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim Front 9(1):69–76. https://doi.org/10.1093/af/vfy034

    Article  PubMed  Google Scholar 

  2. Gutierrez AH, Spero DM, Gay C et al (2012) New vaccines needed for pathogens infecting animals and humans: one health. Hum Vaccin Immunother 8(7):971–978. https://doi.org/10.4161/hv.20202

    Article  PubMed  Google Scholar 

  3. Monath TP (2013) Vaccines against diseases transmitted from animals to humans: a one health paradigm. Vaccine 31(46):5321–5338. https://doi.org/10.1016/j.vaccine.2013.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Njeumi F, Taylor W, Diallo A et al (2012) The long journey: a brief review of the eradication of rinderpest. Rev Sci Tech 31(3):729–746

    Article  CAS  Google Scholar 

  5. Heymann DL (2014) Ebola: learn from the past. Nature 514:299–300

    Article  CAS  Google Scholar 

  6. Graham BS, Sullivan NJ (2018) Emerging viral disease from a vaccinology perspective: preparing for the next pandemic. Nat Immunol 19:20–28

    Article  CAS  Google Scholar 

  7. Olive C (2012) Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 11(2):237–256. https://doi.org/10.1586/erv.11.189

    Article  CAS  PubMed  Google Scholar 

  8. Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3(6):920–940. https://doi.org/10.3390/v3060920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bando JK, Colonna M (2016) Innate lymphoid cell function in the context of adaptive immunity. Nat Immunol 17(7):783–789. https://doi.org/10.1038/ni.3484. PMID: 27328008; PMCID: PMC5156404]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adib-Conquy M, Scott-Algara D et al (2014) TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 92(3):256–262. https://doi.org/10.1038/icb.2013.99

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez B, Poderoso T, Alonso F et al (2013) Antigen targeting to APC: from mice to veterinary species. Dev Comp Immunol 41(2):153–163. https://doi.org/10.1016/j.dci.2013.04.021

    Article  CAS  PubMed  Google Scholar 

  12. Apostolopoulos V, Thalhammer T, Tzakos AG et al (2013) Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv 2013:869718. https://doi.org/10.1155/2013/869718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Plotkin SA (2010) Correlates of protection induced by vaccination. Clin Vaccine Immunol 17(7):1055–1065. https://doi.org/10.1128/CVI.00131-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graham BS, Crowe JE Jr, Ledgerwood JE (2013) Immunization against viral diseases. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 6th edn

    Google Scholar 

  15. Slifka MK (2014) Vaccine-mediated immunity against dengue and the potential for long-term protection against disease. Front Immunol 5:195. https://doi.org/10.3389/fimmu.2014.00195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uittenbogaard JP, Zomer B, Hoogerhout P et al (2011) Reactions of beta-propiolactone with nucleobase analogues, nucleosides, and peptides: implications for the inactivation of viruses. J Biol Chem 286(42):36198–36214. doi:M111.279232 [pii]

    Article  CAS  Google Scholar 

  17. Fan C, Ye X, Ku Z et al (2017) Beta-propiolactone inactivation of Coxsackievirus A16 induces structural alteration and surface modification of viral capsids. J Virol 91(8):e00038-17. https://doi.org/10.1128/JVI.00038-17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Delrue I, Verzele D, Madder A et al (2012) Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 11(6):695–719. https://doi.org/10.1074/jbc.M111.279232

    Article  CAS  PubMed  Google Scholar 

  19. Amanna IJ, Raue HP, Slifka MK (2012) Development of a new hydrogen peroxide-based vaccine platform. Nat Med 18(6):974–979. https://doi.org/10.1038/nm.2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinto AK, Richner JM, Poore EA et al (2013) A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal West Nile virus infection in aged mice. J Virol 87(4):1926–1936. https://doi.org/10.1128/JVI.02903-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stauffer F, De Miranda J, Schechter MCet al (2007) Inactivation of vesicular stomatitis virus through inhibition of membrane fusion by chemical modification of the viral glycoprotein. Antivir Res 73 (1):31-39 doi: https://doi.org/10.1016/j.antiviral.2006.07.007

  22. Tsen SW, Donthi N, La V, Hsieh WH, Li YD, Knoff J, Chen A, Wu TC, Hung CF, Achilefu S, Tsen KT (2015) Chemical-free inactivated whole influenza virus vaccine prepared by ultrashort pulsed laser treatment. J Biomed Opt 20(5):051008. https://doi.org/10.1117/1.JBO.20.5.051008. PMID: 25423046; PMCID: PMC4242973

    Article  CAS  PubMed  Google Scholar 

  23. Kitchen SF (1950) The Development of Neurotropism in Rift Valley Fever Virus. Ann Trop Med Parasitol 44(2):132–145. https://doi.org/10.1080/00034983.1950.11685435

    Article  CAS  PubMed  Google Scholar 

  24. Neumann G, Whitt MA, Kawaoka Y (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA—what have we learned? J Gen Virol 83(Pt 11):2635–2662

    Article  CAS  Google Scholar 

  25. Kit S (1990) Genetically engineered vaccines for control of Aujeszky’s disease (pseudorabies). Vaccine 8(5):420–424

    Article  CAS  Google Scholar 

  26. van Oirschot JT (1999) Diva vaccines that reduce virus transmission. J Biotechnol 73(2-3):195–205

    Article  Google Scholar 

  27. Brun A, Barcena J, Blanco E (2011) Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 157(1):1–12. https://doi.org/10.1016/j.virusres.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  28. Cubillos C, de la Torre BG, Jakab A et al (2008) Enhanced mucosal immunoglobulin A response and solid protection against foot-and-mouth disease virus challenge induced by a novel dendrimeric peptide. J Virol 82(14):7223–7230. https://doi.org/10.1128/JVI.00401-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee CC, MacKay JA, Frechet JM (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526. https://doi.org/10.1038/nbt1171

    Article  CAS  PubMed  Google Scholar 

  30. Wolff JA, Malone RW, Williams P et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468

    Article  CAS  Google Scholar 

  31. Ulmer JB, Donnelly JJ, Parker SE et al (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259(5102):1745–1749

    Article  CAS  Google Scholar 

  32. Saxena S, Sonwane AA, Dahiya SS et al (2009) Induction of immune responses and protection in mice against rabies using a self-replicating RNA vaccine encoding rabies virus glycoprotein. Vet Microbiol 136:36–44. https://doi.org/10.1016/j.vetmic.2008.10.030

    Article  CAS  PubMed  Google Scholar 

  33. Armbruster N, Jasny E, Petsch B (2019) Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies. Vaccine 7(4):132. https://doi.org/10.3390/vaccines7040132

    Article  CAS  Google Scholar 

  34. Brun A, Albina E, Barret T et al (2008) Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 26(51):6508–6528. https://doi.org/10.1016/j.vaccine.2008.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vajdy M, Gardner J, Neidleman J et al (2001) Human immunodeficiency virus type 1 Gag-specific vaginal immunity and protection after local immunizations with sindbis virus-based replicon particles. J Infect Dis 184(12):1613–1616. https://doi.org/10.1086/324581

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Hu KF, Rozell B et al (2002) Vaccination with recombinant alphavirus or immune-stimulating complex antigen against respiratory syncytial virus. J Immunol 169(6):3208–3216

    Article  CAS  Google Scholar 

  37. Ikegami T, Won S, Peters CJ, Makino S (2006) Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80(6):2933–2940. https://doi.org/10.1128/JVI.80.6.2933-2940.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moreno S, Calvo-Pinilla E, Devignot S et al (2020) Recombinant Rift Valley fever viruses encoding bluetongue virus (BTV) antigens: immunity and efficacy studies upon a BTV-4 challenge. PLoS Negl Trop Dis 14(12):e0008942. https://doi.org/10.1371/journal.pntd.0008942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ornatsky O, Bandura D, Baranov V et al (2010) Highly multiparametric analysis by mass cytometry. J Immunol Methods 361(1–2):1–20. https://doi.org/10.1016/j.jim.2010.07.002

    Article  CAS  Google Scholar 

  40. He Y, Xiang Z (2013) Databases and in silico tools for vaccine design. Methods Mol Biol 993:115–127. https://doi.org/10.1007/978-1-62703-342-8_8

    Article  CAS  PubMed  Google Scholar 

  41. Nakaya HI, Pulendran B (2012) Systems vaccinology: its promise and challenge for HIV vaccine development. Curr Opin HIV AIDS 7(1):24–31. https://doi.org/10.1097/COH.0b013e32834dc37b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woolums AR, Swiderski C (2021) New approaches to vaccinology made possible by advances in next generation sequencing, bioinformatics and protein modeling. Curr Issues Mol Biol 42:605–634. https://doi.org/10.21775/cimb.042.605

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Brun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brun, A. (2022). An Overview of Veterinary Viral Diseases and Vaccine Technologies. In: Brun, A. (eds) Vaccine Technologies for Veterinary Viral Diseases. Methods in Molecular Biology, vol 2465. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2168-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2168-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2167-7

  • Online ISBN: 978-1-0716-2168-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics