Skip to main content

Efficient Protoplast Isolation and DNA Transfection for Winter Oilseed Crops, Pennycress (Thlaspi arvense ) and Camelina (Camelina sativa )

  • Protocol
  • First Online:
Protoplast Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2464))

Abstract

Pennycress (Thlaspi arvense) and camelina (Camelina sativa) are nonfood winter oilseed crops that have the potential to contribute to sustainable biofuel production. However, undesired agronomic traits of pennycress and camelina currently hinder broad cultivation of these plants in the field. Recently, genome editing using the CRISPR-Cas technology has been applied to improve poor agronomic traits such as the weedy phenotype of pennycress and the oxidation susceptible lipid profile of camelina. In these works, the CRISPR reagents were introduced into the plants using the Agrobacterium-mediated floral dipping method. For accelerated domestication and value improvements of these winter oilseed crops, DNA-free genome editing platform and easy evaluation method of the CRISPR-Cas reagents are highly desirable. Cell wall-free protoplasts are great material to expand the use of gene engineering tools. In this chapter, we present a step-by-step guide to the mesophyll protoplast isolation from in vitro culture-grown pennycress and soil-grown camelina. The protocol also includes procedures for DNA transfection and protoplast viability test using fluorescein diacetate. With this protocol, we can isolate an average of 6 × 106 cells from pennycress and 3 × 106 cells from camelina per gram of fresh leaf tissues. Using a 7.3 kb plasmid DNA carrying green and red fluorescent protein marker genes, we can achieve an average transfection rate of 40% validated by flow cytometry for both plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sindelar AJ, Schmer MR, Gesch RW, Forcella F, Eberle CA, Thom MD, Archer DW (2017) Winter oilseed production for biofuel in the US corn belt: opportunities and limitations. GCB Bioenergy 9:508–524

    Article  CAS  Google Scholar 

  2. Isbell TA (2009) US effort in the development of new crops (Lesquerella, Pennycress Coriander and Cuphea). OCL Ol Corps Gras Li 16:205–210. https://doi.org/10.1051/ocl.2009.0269

    Article  Google Scholar 

  3. Fröhlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crops Prod 21:25–31

    Article  Google Scholar 

  4. Soriano NU, Narani A (2012) Evaluation of biodiesel derived from Camelina sativa oil. J Am Oil Chem Soc 89:917–923

    Article  CAS  Google Scholar 

  5. Dose HL, Eberle CA, Forcella F, Gesch RW (2017) Early planting dates maximize winter annual field pennycress (Thlaspi arvense L.) yield and oil content. Ind Crop Prod 97:477–483

    Article  Google Scholar 

  6. Gesch RW, Archer DW, Berti MT (2014) Dual cropping winter camelina with soybean in the Northern corn belt. Agron J 106:1735–1745

    Article  Google Scholar 

  7. Mitich LW (1996) Field pennycress (Thlaspi arvense L.)—The stinkweed. Weed Technol 10:675–678

    Article  Google Scholar 

  8. Vaughn SF, Isbell TA, Weisleder D, Berhow MA (2005) Biofumigant compounds released by field pennycress (Thlaspi arvense) seedmeal. J Chem Ecol 31:167–177

    Article  CAS  Google Scholar 

  9. Selling GW, Hojilla-Evangelista MP, Evangelista RL, Isbell TA, Price N, Doll KM (2013) Extraction of proteins from pennycress seeds and press cake. Ind Crop Prod 41:113–119

    Article  CAS  Google Scholar 

  10. Moser BR, Knothe G, Vaughn SF, Isbell TA (2009) Production and evaluation of biodiesel from field Pennycress (Thlaspi arvense L.) Oil. Energy Fuel 23:4149–4155

    Article  CAS  Google Scholar 

  11. EFSA Panel on Contaminants in the Food Chain (CONTAM), Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Sandra C, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom L, Nebbia CS, Oswald I, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vollmer G, Wallace H, Cottrill B, Dogliotti E, Laakso J, Metzler M, Velasco L, Ruiz JA, Varga E, Dörr B, Sousa R, Vleminckx C (2016) Erucic acid in feed and food. EFSA J 14:e04593

    Google Scholar 

  12. Fan J, Shonnard DR, Kalnes TN, Johnsen P, Rao S (2013) A life cycle assessment of pennycress (Thlaspi arvense L.) -derived jet fuel and diesel. Biomass Bioenergy 55:87–100

    Article  CAS  Google Scholar 

  13. Johnson GA, Kantar MB, Betts KJ, Wyse DL (2015) Field pennycress production and weed control in a double crop system with soybean in Minnesota. Agron J 107:532–540

    Article  Google Scholar 

  14. Cubins JA, Wells MS, Frels K, Ott MA, Forcella F, Johnson GA, Walia MK, Becker RL, Gesch RW (2019) Management of pennycress as a winter annual cash cover crop. A review. Agron Sustain Dev 39:46. https://doi.org/10.1007/s1359301905920

    Article  CAS  Google Scholar 

  15. Moore SA, Wells MS, Gesch RW, Becker RL, Rosen CJ, Wilson ML (2020) Pennycress as a cash cover-crop: improving the sustainability of sweet corn production systems. Agronomy 10:614

    Article  CAS  Google Scholar 

  16. Altendorf K, Isbell T, Wyse DL, Anderson JA (2019) Significant variation for seed oil content, fatty acid profile, and seed weight in natural populations of field pennycress (Thlaspi arvense L.). Ind Crop Prod 129:261–268

    Article  CAS  Google Scholar 

  17. Chopra R, Johnson EB, Emenecker R, Cahoon EB, Lyons J, Kliebenstein DJ, Daniels E, Dorn KM, Esfahanian M, Folstad N, Frels K, McGinn M, Ott M, Gallaher C, Altendorf K, Berroyer A, Ismail B, Anderson JA, Wyse DL, Ulmasoy T, Sdbrook JC, Mark MD (2020) Identification and stacking of crucial traits required for the domestication of pennycress. Nat Food 1:84–91

    Article  Google Scholar 

  18. McGinn M, Phippen WB, Chopra R, Bansal S, Jarvis BA, Phippen ME, Dorn KM, Esfahanian M, Nazarenus TJ, Cahoon EB, Durrett TP, Mark MD, Sedbrook JC (2019) Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop. Plant Biotechnol J 17:776–788

    Article  CAS  Google Scholar 

  19. Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6:113–119

    Article  Google Scholar 

  20. Francis A, Warwick SI (2009) The biology of Canadian weeds. 142. Camelina alyssum (Mill.) Thell.; C. microcarpa Andrz. ex DC.; C. sativa (L.) Crantz. Can J Plant Sci 89:791–810

    Article  Google Scholar 

  21. Gugel RK, Falk KC (2006) Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86:1047–1058

    Article  Google Scholar 

  22. Obour A, Sintim H, Obeng E, Jeliazkov V (2015) Oilseed Camelina (Camelina sativa L Crantz): production systems, prospects and challenges in the USA great plains. Adv Plants Agric Res. https://doi.org/10.15406/apar.2015.02.00043

  23. Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope? Lipid Technol 22:270–273

    Article  CAS  Google Scholar 

  24. Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27:273–278

    Article  CAS  Google Scholar 

  25. Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657

    Article  CAS  Google Scholar 

  26. Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, Faure JD (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploidy Camelina sativa. Plant Biotechnol J 15:729–739

    Article  CAS  Google Scholar 

  27. Aznar-Moreno JA, Durrett TP (2017) Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa. Plant Cell Physiol 58:1260–1267

    Article  CAS  Google Scholar 

  28. Ozseyhan ME, Kang J, Mu X, Lu C (2018) Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol Biochem 123:1–7

    Article  CAS  Google Scholar 

  29. Lyzenga WJ, Harrington M, Bekkaoui D, Wigness M, Hegedus DD, Rozwadowski KL (2019) CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. BMC Plant Biol 19:292

    Article  Google Scholar 

  30. Zaman QU, Li C, Cheng H, Hu Q (2019) Genome editing opens a new era of genetic improvement in polyploid crops. Crop J 7:141–150

    Article  Google Scholar 

  31. Fahleson J, Glimelius K (1999) Protoplast fusion for symmetric somatic hybrid production in Brassicaceae. In: Hall RD (ed) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 195–210. https://doi.org/10.1385/1-59259-583-9:195

    Chapter  Google Scholar 

  32. Bates GW (1999) Plant Transformation via protoplast electroporation. In: Hall RD (ed) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 359–366. https://doi.org/10.1385/1-59259-583-9:359

    Chapter  Google Scholar 

  33. Maas C, Werr W (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep 8:148–151

    Article  CAS  Google Scholar 

  34. Jiang F, Zhu J, Liu HL (2013) Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250:1231–1238

    Article  CAS  Google Scholar 

  35. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68

    Article  CAS  Google Scholar 

  36. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410

    Article  CAS  Google Scholar 

  37. Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232

    Article  Google Scholar 

  38. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  Google Scholar 

  39. Lin CS, Hsu CT, Yang LH, Lee LY, Fu JY, Cheng QW, Wu FH, Hsiao CW, Zhang Y, Zhang R, Chang WJ, Yu CT, Wang W, Liao LJ, Gelvin SB, Shih MC (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310

    Article  CAS  Google Scholar 

  40. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  Google Scholar 

  41. Gomez-Cano L, Yang F, Grotewold E (2019) Isolation and efficient maize protoplast transformation. Bio-protocol 9:e3346. https://doi.org/10.21769/bioprotoc.3346

    Article  Google Scholar 

  42. Wu F, Hanzawa YA (2018) Simple method for isolation of soybean protoplasts and application to transient gene expression analyses. JoVE. https://doi.org/10.3791/57258

  43. Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Biotech Histochem 47:189–194

    CAS  Google Scholar 

  44. Miller K, Eggenberger A, Lee K, Liu F, Kang M, Drent M, Ruba A, Kirscht T, Wang K, Jiang S (2020) An improved biolistic delivery and analysis method for evaluation of DNA and CRISPR-Cas delivery efficacy in plant tissue. Sci Rep. https://doi.org/10.1038/s41598-021-86549-9

  45. Coers L, Phippen W (2011) Determining the role of day length and temperature on vernalization of field pennycress (Thlaspi arvense L.). In poster presentation at the 23rd Annual Meeting of the Association for the Advancement of Industrial Crops. Fargo, ND, USA, 11–14th September 2011

    Google Scholar 

  46. Isbell TA, Cermak SC, Marek LF (2017) Registration of Elizabeth Thlaspi arvense L. (Pennycress) with improved nondormant traits. J Plant Regist 11:311–314

    Article  Google Scholar 

  47. Hauptmann RM, Widholm JM, Paxton JD (1985) Benomyl: A broad spectrum fungicide for use in plant cell and protoplast culture. Plant Cell Rep 4:129–132

    Article  CAS  Google Scholar 

  48. Hochwagen A, Wrobel G, Carton M, Demougin P, Niederhauser-Wiederkehr C, Boselli M, Primig M, Amon A (2005) Novel response to microtubule perturbation in meiosis. Mol Cell Biol 25:4767–4781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Oluwatoyosi Akintayo of Dr. Madan Bhattacharyya lab for providing camelina plantlets and Shawn Rigby of the Flow Cytometry Facility for technical assistance. This project was partially supported by National Science Foundation Plant Genome Research Program Grants 1917138, to K.W., by the USDA NIFA Hatch project #IOW04714, by State of Iowa funds, and by the Crop Bioengineering Center of Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kang, M., Lee, K., Wang, K. (2022). Efficient Protoplast Isolation and DNA Transfection for Winter Oilseed Crops, Pennycress (Thlaspi arvense ) and Camelina (Camelina sativa ). In: Wang, K., Zhang, F. (eds) Protoplast Technology. Methods in Molecular Biology, vol 2464. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2164-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2164-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2163-9

  • Online ISBN: 978-1-0716-2164-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics