Skip to main content

Tracking of NK Cells by Positron Emission Tomography Using 89Zr-Oxine Ex Vivo Cell Labeling

  • Protocol
  • First Online:
Natural Killer (NK) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2463))

Abstract

A 89Zr-oxine ex vivo cell labeling method for tracking various cells by positron emission tomography (PET) imaging has recently been developed. 89Zr-oxine is synthesized from oxine and 89Zr-chloride, which was converted from 89Zr-oxalate, with neutralization. To track migration of natural killer (NK) cells in vivo in real time by PET imaging, NK cells are labeled with 89Zr-oxine ex vivo and infused to a recipient. The labeling is performed by mixing 89Zr-oxine solution to NK cell suspension at room temperature, followed by washing. Care should be taken to label the cells at optimal radioactivity doses that maintain their viability and functionality. 89Zr-oxine labeled NK cells can be tracked for their migration and distribution by PET/computed tomography imaging for at least 7 days. Of note, this protocol is applicable to other types of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ruggeri L, Aversa F, Martelli MF, Velardi A (2006) Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev 214:202–218

    Article  CAS  Google Scholar 

  2. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  CAS  Google Scholar 

  3. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  CAS  Google Scholar 

  4. Bern MD, Parikh BA, Yang L, Beckman DL, Poursine-Laurent J, Yokoyama WM (2019) Inducible down-regulation of MHC class I results in natural killer cell tolerance. J Exp Med 216:99–116

    Article  CAS  Google Scholar 

  5. Bjorklund AT, Carlsten M, Sohlberg E, Liu LL, Clancy T, Karimi M, Cooley S, Miller JS, Klimkowska M, Schaffer M, Watz E, Wikstrom K, Blomberg P, Wahlin BE, Palma M, Hansson L, Ljungman P, Hellstrom-Lindberg E, Ljunggren HG, Malmberg KJ (2018) Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin Cancer Res 24:1834–1844

    Article  CAS  Google Scholar 

  6. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH, Leung W (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28:955–959

    Article  CAS  Google Scholar 

  7. Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, Jonson AL, Panoskaltsis-Mortari A, Curtsinger J, McKenna D, Dusenbery K, Bliss R, Downs LS, Miller JS (2011) A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13:98–107

    Article  CAS  Google Scholar 

  8. Martinez M, Moon EK (2019) CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 10:128

    Article  CAS  Google Scholar 

  9. Vignali D, Kallikourdis M (2017) Improving homing in T cell therapy. Cytokine Growth Factor Rev 36:107–116

    Article  CAS  Google Scholar 

  10. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  Google Scholar 

  11. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207

    Article  Google Scholar 

  12. Sato N, Wu H, Asiedu KO, Szajek LP, Griffiths GL, Choyke PL (2015) (89)Zr-oxine complex PET cell imaging in monitoring cell-based therapies. Radiology 275:490–500

    Article  Google Scholar 

  13. Charoenphun P, Meszaros LK, Chuamsaamarkkee K, Sharif-Paghaleh E, Ballinger JR, Ferris TJ, Went MJ, Mullen GE, Blower PJ (2015) [(89)Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography. Eur J Nucl Med Mol Imaging 42:278–287

    Article  CAS  Google Scholar 

  14. Asiedu KO, Koyasu S, Szajek LP, Choyke PL, Sato N (2017) Bone marrow cell trafficking analyzed by (89)Zr-oxine positron emission tomography in a murine transplantation model. Clin Cancer Res 23:2759–2768

    Article  CAS  Google Scholar 

  15. Asiedu KO, Ferdousi M, Ton PT, Adler SS, Choyke PL, Sato N (2018) Bone marrow cell homing to sites of acute tibial fracture: (89)Zr-oxine cell labeling with positron emission tomographic imaging in a mouse model. EJNMMI Res 8:109

    Article  Google Scholar 

  16. Hong SG, Sato N, Legrand F, Gadkari M, Makiya M, Stokes K, Howe KN, Yu SJ, Linde NS, Clevenger RR, Hunt T, Hu Z, Choyke PL, Dunbar CE, Klion AD, Franco LM (2020) Glucocorticoid-induced eosinopenia results from CXCR4-dependent bone marrow migration. Blood 136:2667–2678

    Article  Google Scholar 

  17. Sato N, Stringaris K, Davidson-Moncada JK, Reger R, Adler SS, Dunbar C, Choyke PL, Childs RW (2020) In vivo tracking of adoptively transferred natural killer cells in rhesus macaques using (89)zirconium-oxine cell labeling and PET imaging. Clin Cancer Res 26:2573–2581

    Article  CAS  Google Scholar 

  18. Man F, Lim L, Volpe A, Gabizon A, Shmeeda H, Draper B, Parente-Pereira AC, Maher J, Blower PJ, Fruhwirth GO, de Rosales RTM (2019) In vivo PET tracking of (89)Zr-labeled Vγ9Vδ2 T cells to mouse xenograft breast tumors activated with liposomal alendronate. Mol Ther 27:219–229

    Article  CAS  Google Scholar 

  19. Weist MR, Starr R, Aguilar B, Chea J, Miles JK, Poku E, Gerdts E, Yang X, Priceman SJ, Forman SJ, Colcher D, Brown CE, Shively JE (2018) PET of adoptively transferred chimeric antigen receptor T cells with (89)Zr-oxine. J Nucl Med 59:1531–1537

    Article  CAS  Google Scholar 

  20. Kurebayashi Y, Choyke PL, Sato N (2021) Imaging of cell-based therapy using (89)Zr-oxine ex vivo cell labeling for positron emission tomography. Nanotheranostics 5:27–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sato, N., Szajek, L.P., Choyke, P.L. (2022). Tracking of NK Cells by Positron Emission Tomography Using 89Zr-Oxine Ex Vivo Cell Labeling. In: Shimasaki, N. (eds) Natural Killer (NK) Cells. Methods in Molecular Biology, vol 2463. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2160-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2160-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2159-2

  • Online ISBN: 978-1-0716-2160-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics