Skip to main content

Generation of a Diet-Induced Mouse Model of Nonalcoholic Fatty Liver Disease

  • Protocol
  • First Online:
Non-Alcoholic Steatohepatitis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2455))

Abstract

The obesity epidemic is driving the increased prevalence of nonalcoholic fatty liver disease (NAFLD) globally. The more aggressive subtype of NAFLD, nonalcoholic steatohepatitis (NASH), can lead to progressive disease and ultimately lead to cirrhosis, liver cancer, and death. There are many unmet needs in the field of NAFLD including understanding of molecular mechanisms driving disease, natural history, risk for liver cancer, and most importantly FDA approved therapeutics. Animal models serve as a tool to aid in answering some of these questions. Here, we describe the diet-induced animal model of NAFLD (DIAMOND), a mouse model with many characteristics that mimic human NASH.

Conflict-of-Interest: Both authors own equity in SanyalBio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Younossi ZM, Koenig AB, Abdelatif D et al (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84

    Article  Google Scholar 

  2. Pearlman M, Loomba R (2014) State of the art: treatment of nonalcoholic steatohepatitis. Curr Opin Gastroenterol 30:223–237

    Article  CAS  Google Scholar 

  3. Younossi Z, Anstee QM, Marietti M et al (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15:11–20

    Article  Google Scholar 

  4. Calle EE, Rodriguez C, Walker-Thurmond K et al (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  Google Scholar 

  5. Chalasani N, Younossi Z, Lavine JE et al (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67:328–357

    Article  Google Scholar 

  6. Sheka AC, Adeyi O, Thompson J et al (2020) Nonalcoholic steatohepatitis: a review. JAMA 323:1175–1183

    Article  CAS  Google Scholar 

  7. Noureddin M, Vipani A, Bresee C et al (2018) NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am J Gastroenterol 113:1649–1659

    Article  Google Scholar 

  8. Asgharpour A, Dinani A, Friedman SL (2021) Basic science to clinical trials in non-alcoholic fatty liver disease and alcohol-related liver disease: collaboration with industry. Transl Gastroenterol Hepatol 6:5

    Article  Google Scholar 

  9. Sahai A, Malladi P, Melin-Aldana H et al (2004) Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am J Physiol Gastrointest Liver Physiol 287:G264–G273

    Article  CAS  Google Scholar 

  10. Rinella ME, Green RM (2004) The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol 40:47–51

    Article  CAS  Google Scholar 

  11. Santhekadur PK, Kumar DP, Sanyal AJ (2018) Preclinical models of non-alcoholic fatty liver disease. J Hepatol 68:230–237

    Article  CAS  Google Scholar 

  12. Charlton M, Krishnan A, Viker K et al (2011) Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 301:G825–G834

    Article  CAS  Google Scholar 

  13. Asgharpour A, Cazanave SC, Pacana T et al (2016) A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol 65:579–588

    Article  CAS  Google Scholar 

  14. Tsuchida T, Lee YA, Fujiwara N et al (2018) A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol 69:385–395

    Article  Google Scholar 

  15. Kubota N, Kado S, Kano M et al (2013) A high-fat diet and multiple administration of carbon tetrachloride induces liver injury and pathological features associated with non-alcoholic steatohepatitis in mice. Clin Exp Pharmacol Physiol 40:422–430

    Article  CAS  Google Scholar 

  16. Park EJ, Lee JH, Yu GY et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:197–208

    Article  CAS  Google Scholar 

  17. Hui L, Bakiri L, Mairhorfer A et al (2007) p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 39:741–749

    Article  CAS  Google Scholar 

  18. Chalasani NP, Hayashi PH, Bonkovsky HL et al (2014) ACG clinical guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 109:950–966

    Article  Google Scholar 

  19. Nakagawa H, Umemura A, Taniguchi K et al (2014) ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26:331–343

    Article  CAS  Google Scholar 

  20. Caviglia JM, Schwabe RF (2015) Mouse models of liver cancer. Methods Mol Biol 1267:165–183

    Article  CAS  Google Scholar 

  21. Romeo S, Kozlitina J et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  Google Scholar 

  22. Abul-Husn NS, Cheng X, Li AH et al (2018) A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 378:1096–1106

    Article  CAS  Google Scholar 

  23. Kozlitina J, Smagris E, Stender S et al (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356

    Article  CAS  Google Scholar 

  24. Hoshida Y, Nijman SM, Kobayashi M et al (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392

    Article  CAS  Google Scholar 

  25. Ayala JE, Samuel VT, Morton GJ et al (2010) Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech 3:525–534

    Article  CAS  Google Scholar 

  26. Contos MJ, Sanyal AJ (2002) The clinicopathologic spectrum and management of nonalcoholic fatty liver disease. Adv Anat Pathol 9:37–51

    Article  Google Scholar 

  27. Ludwig J, Viggiano TR, McGill DB et al (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55:434–438

    CAS  PubMed  Google Scholar 

  28. Bedossa P (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–575

    Article  CAS  Google Scholar 

  29. Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  Google Scholar 

  30. Goodman ZD, Becker RL Jr, Pockros PJ et al (2007) Progression of fibrosis in advanced chronic hepatitis C: evaluation by morphometric image analysis. Hepatology 45:886–894

    Article  CAS  Google Scholar 

  31. Hafkenscheid JC, Dijt CC (1979) Determination of serum aminotransferases: activation by pyridoxal-5′-phosphate in relation to substrate concentration. Clin Chem 25:55–59

    Article  CAS  Google Scholar 

  32. Fossati P, Prencipe L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28:2077–2080

    Article  CAS  Google Scholar 

  33. Pesce MA, Bodourian SH (1976) Enzymatic rate method for measuring cholesterol in serum. Clin Chem 22:2042–2045

    CAS  PubMed  Google Scholar 

  34. Charuruks N, Milintagas A (2005) Evaluation of calculated low-density lipoprotein against a direct assay. J Med Assoc Thail 88(Suppl 4):S274–S279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amon Asgharpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Asgharpour, A., Sanyal, A.J. (2022). Generation of a Diet-Induced Mouse Model of Nonalcoholic Fatty Liver Disease. In: Sarkar, D. (eds) Non-Alcoholic Steatohepatitis. Methods in Molecular Biology, vol 2455. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2128-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2128-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2127-1

  • Online ISBN: 978-1-0716-2128-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics