Skip to main content

Profiling SARS-CoV-2 Infection by High-Throughput Shotgun Proteomics

  • Protocol
  • First Online:
SARS-CoV-2

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2452))

Abstract

A comprehensive cartography of viral and host proteins expressed during the different stages of SARS-CoV-2 infection is key to decipher the molecular mechanisms of pathogenesis. For the most detailed analysis, proteins should be first purified and then proteolyzed with trypsin in the presence of detergents. The resulting peptide mixtures are resolved by reverse phase ultrahigh pressure liquid chromatography and then identified by a high-resolution tandem mass spectrometer. The thousands of spectra acquired for each fraction can then be assigned to peptide sequences using a relevant protein sequence database, comprising viral and host proteins and potential contaminants from the growth medium or from the operator. The peptides are evidencing proteins and their intensities are used to infer the abundance of their corresponding proteins. Data analysis allows for highlighting the viral and host proteins dynamics. Here, we describe the sample preparation method adapted to profile SARS-CoV-2 -infected cell models, the shotgun proteomics pipeline to record experimental data, and the workflow for data interpretation to analyze infection-induced proteomic changes in a time-resolved manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armengaud J, Delaunay-Moisan A, Thuret JY, van Anken E, Acosta-Alvear D, Aragon T, Arias C, Blondel M, Braakman I, Collet JF, Courcol R, Danchin A, Deleuze JF, Lavigne JP, Lucas S, Michiels T, Moore ERB, Nixon-Abell J, Rossello-Mora R, Shi ZL, Siccardi AG, Sitia R, Tillett D, Timmis KN, Toledano MB, van der Sluijs P, Vicenzi E (2020) The importance of naturally attenuated SARS-CoV-2in the fight against COVID-19. Environ Microbiol 22(6):1997–2000. https://doi.org/10.1111/1462-2920.15039

    Article  CAS  PubMed  Google Scholar 

  2. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-710.1038/s41586-020-2012-7. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zheng J (2020) SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci 16(10):1678–1685. https://doi.org/10.7150/ijbs.45053ijbsv16p1678. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boni MF, Lemey P, Jiang X, Lam TT, Perry BW, Castoe TA, Rambaut A, Robertson DL (2020) Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol 5(11):1408–1417. https://doi.org/10.1038/s41564-020-0771-410.1038/s41564-020-0771-4. [pii]

  5. Kubina R, Dziedzic A (2020) Molecular and serological tests for COVID-19 a comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics. Diagnostics (Basel) 10(6):E434. https://doi.org/10.3390/diagnostics10060434. [pii]

    Article  CAS  Google Scholar 

  6. Gouveia D, Grenga L, Gaillard JC, Gallais F, Bellanger L, Pible O, Armengaud J (2020) Shortlisting SARS-CoV-2 peptides for targeted studies from experimental data-dependent acquisition tandem mass spectrometry data. Proteomics 20(14):e2000107. https://doi.org/10.1002/pmic.202000107

    Article  CAS  PubMed  Google Scholar 

  7. Gouveia D, Miotello G, Gallais F, Gaillard JC, Debroas S, Bellanger L, Lavigne JP, Sotto A, Grenga L, Pible O, Armengaud J (2020) Proteotyping SARS-CoV-2 virus from nasopharyngeal swabs: a proof-of-concept focused on a 3 min mass spectrometry window. J Proteome Res 19(11):4407–4416. https://doi.org/10.1021/acs.jproteome.0c00535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nachtigall FM, Pereira A, Trofymchuk OS, Santos LS (2020) Detection of SARS-CoV-2 in nasal swabs using MALDI-MS. Nat Biotechnol 38(10):1168–1173. https://doi.org/10.1038/s41587-020-0644-710.1038/s41587-020-0644-7. [pii]

  9. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, Cinatl J, Munch C (2020) Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583(7816):469–472. https://doi.org/10.1038/s41586-020-2332-710.1038/s41586-020-2332-7. [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Huttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, CJP M, Gaulton A, Manners EJ, Felix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, JCJ C, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, Garcia-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ (2020) The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182(3):685–712 e619. S0092-8674(20)30811-4 [pii]. https://doi.org/10.1016/j.cell.2020.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Huttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, Garcia-Sastre A, Shokat KM, Shoichet BK, Krogan NJ (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583(7816):459–468. https://doi.org/10.1038/s41586-020-2286-910.1038/s41586-020-2286-9. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grenga L, Gallais F, Pible O, Gaillard JC, Gouveia D, Batina H, Bazaline N, Ruat S, Culotta K, Miotello G, Debroas S, Roncato MA, Steinmetz G, Foissard C, Desplan A, Alpha-Bazin B, Almunia C, Gas F, Bellanger L, Armengaud J (2020) Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines. Emerg Microbes Infect 9(1):1712–1721. https://doi.org/10.1080/22221751.2020.1791737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gouveia D, Grenga L, Pible O, Armengaud J (2020) Quick microbial molecular phenotyping by differential shotgun proteomics. Environ Microbiol 22(8):2996–3004. https://doi.org/10.1111/1462-2920.14975

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pereira S, Malard V, Ravanat J-L, Davin A-H, Armengaud J, Foray N, Adam-Guillermin C (2014) Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One 9(3):e92974

    Article  Google Scholar 

  15. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526. https://doi.org/10.1074/mcp.M113.031591M113.031591. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-610.1038/s41467-019-09234-6. [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rosenling T, Slim CL, Christin C, Coulier L, Shi S, Stoop MP, Bosman J, Suits F, Horvatovich PL, Stockhofe-Zurwieden N, Vreeken R, Hankemeier T, van Gool AJ, Luider TM, Bischoff R (2009) The effect of preanalytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF). J Proteome Res 8(12):5511–5522. https://doi.org/10.1021/pr9005876

    Article  CAS  PubMed  Google Scholar 

  18. Hartmann EM, Allain F, Gaillard JC, Pible O, Armengaud J (2014) Taking the shortcut for high-throughput shotgun proteomic analysis of bacteria. Methods Mol Biol 1197:275–285. https://doi.org/10.1007/978-1-4939-1261-2_16

    Article  CAS  PubMed  Google Scholar 

  19. Carvalho PC, Fischer JS, Chen EI, Yates JR 3rd, Barbosa VC (2008) PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics 9:316. https://doi.org/10.1186/1471-2105-9-3161471-2105-9-316. [pii]

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commissariat à l’Energie Atomique et aux Energies Alternatives, and the Agence Nationale de la Recherche (ANR-12-BSV6-0012-01). We thank our colleagues from CEA-Li2D for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Armengaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grenga, L., Gouveia, D., Armengaud, J. (2022). Profiling SARS-CoV-2 Infection by High-Throughput Shotgun Proteomics. In: Chu, J.J.H., Ahidjo, B.A., Mok, C.K. (eds) SARS-CoV-2. Methods in Molecular Biology, vol 2452. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2111-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2111-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2110-3

  • Online ISBN: 978-1-0716-2111-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics