Skip to main content

Soft Statistical Mechanics for Biology

  • Protocol
  • First Online:
Data Mining Techniques for the Life Sciences

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2449))

Abstract

The multilevel organization of nature is self-evident: proteins do interact among them to give rise to an organized metabolism and the same hierarchical organization is in action for gene expression, tissue and organ architectures, and ecological systems.

The still more common approach to such state of affairs is to think that causally relevant events originate from the lower level in the form of perturbations, that climb up the hierarchy reaching the ultimate layer of macroscopic behavior (e.g., causing a specific disease). Such rigid bottom-up causative model is unable to offer realistic models of many biological phenomena.

Complex network approach allows to uncover the nature of multilevel organization, but in order to operationally define the organization principles of biological systems, we need to go further and complement network approach with sensible measures of order and organization. These measures, while keeping their original physical meaning, must not impose theoretical premises not verifiable in biological frameworks. We will show here how relatively simple and largely hypothesis-free multidimensional statistics tools can satisfactorily meet these criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Paola L, De Ruvo M, Paci P, Santoni D, Giuliani A (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113(3):1598–1613

    Article  PubMed  CAS  Google Scholar 

  2. Lucchetta M, Pellegrini M (2020) Finding disease modules for cancer and COVID-19 in gene co-expression networks with the Core&Peel method. Sci Rep 10(1):1–18

    Article  CAS  Google Scholar 

  3. Avena-Koenigsberger A, Misic B, Sporns O (2018) Communication dynamics in complex brain networks. Nat Rev Neurosci 19(1):17–24

    Article  CAS  Google Scholar 

  4. Xiao Y, Angulo MT, Friedman J, Waldor MK, Weiss ST, Liu YY (2017) Mapping the ecological networks of microbial communities. Nat Commun 8(1):1–12

    Article  CAS  Google Scholar 

  5. Weaver W (1948) Science and complexity. Am Sci 36:5346–5541

    Google Scholar 

  6. Fankhauser G (1945) Maintenance of normal structure in heteroploid salamander larvae, through compensation of changes in cell size by adjustment of cell number and cell shape. J Exp Zool 100:445–455

    Article  CAS  PubMed  Google Scholar 

  7. Pascual M, Levin SA (1999) From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology 80(7):2225–2236

    Article  Google Scholar 

  8. Cheng H, Yao N, Huang ZG, Park J, Do Y, Lai YC (2014) Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions. Sci Rep 4(1):1–7

    CAS  Google Scholar 

  9. Laughlin RB, Pines D, Schmalian J, Stojković BP, Wolynes P (2000) The middle way. Proc Natl Acad Sci U S A 97(1):32–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicosia V, Domenico MD, Latora V (2014) Characteristic exponents of complex networks. Europhys Lett 106(5):58005

    Article  CAS  Google Scholar 

  11. Mikulecky DC (2001) Network thermodynamics and complexity: a transition to relational systems theory. Comput Chem 25(4):369–391

    Article  CAS  PubMed  Google Scholar 

  12. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  CAS  PubMed  Google Scholar 

  13. Di Paola L, Giuliani A (2015) Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol 31:43–48

    Article  PubMed  CAS  Google Scholar 

  14. Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2(11):559–572

    Article  Google Scholar 

  16. Giuliani A (2017) The application of principal component analysis to drug discovery and biomedical data. Drug Discov Today 22(7):1069–1076

    Article  CAS  PubMed  Google Scholar 

  17. Bonacich P (2007) Some unique properties of eigenvector centrality. Soc Networks 29(4):555–564

    Article  Google Scholar 

  18. Gorban AN, Tyukina TA, Pokidysheva I, Smirnova EV (2021) Dynamic and thermodynamic models of adaptation. Phys Life Rev 37:17–644

    Article  CAS  PubMed  Google Scholar 

  19. Soofi E (1994) Capturing the intangible concept of information. J Am Stat Ass 89(428):1243–1254

    Article  Google Scholar 

  20. Li M, Vitalnyi P (2013) An introduction to Kolmogorov complexity and its applications. Springer Science & Business Media, Berlin

    Google Scholar 

  21. Giuliani A, Colafranceschi M, Webber CL Jr, Zbilut JP (2001) A complexity score derived from principal components analysis of nonlinear order measures. Phys A Stat Mech Appl 301(1–4):567–588

    Article  Google Scholar 

  22. Gorban AN, Smirnova EV, Tyukina TA (2010) Correlations, risk and crisis: from physiology to finance. Phys A Stat Mech Appl 389(16):3193–3217

    Article  Google Scholar 

  23. Baedke J (2013) The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Stud Hist Philos Sci C Biol Biomed Sci 44(4):756–773

    Article  Google Scholar 

  24. Montévil M, Speroni L, Sonnenschein C, Soto AM (2016) Modeling mammary organogenesis from biological first principles: cells and their physical constraints. Prog Biophys Mol Biol 122:58–69

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bizzarri M, Giuliani A, Minnini M, Monti N, Cucina A (2020) Constraints shape cell function and morphology by canalizing the developmental path along the Waddington’s landscape. BioEssays 42:e1900108

    Article  PubMed  Google Scholar 

  26. Sánchez-Gutiérrez D, Tozluoglu M, Barry JD, Pascual A, Mao Y, Escudero LM (2016) Fundamental physical cellular constraints drive self-organization of tissues. EMBO J 35(1):77–88

    Article  PubMed  CAS  Google Scholar 

  27. Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13(6):824–831

    Article  CAS  PubMed  Google Scholar 

  28. Paldi A (2020) Stochastic or deterministic? That is the question. Organisms J Biol Sci 4(1):77–79

    Google Scholar 

  29. Eldar A, Elowitz M (2010) Functional roles for noise in genetic circuits. Nature 467:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236(4806):1237–1245

    Article  CAS  PubMed  Google Scholar 

  31. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarrazin S, Sieweke M (2011) Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Semin Immunol 23(5):326–334

    Article  CAS  PubMed  Google Scholar 

  33. von Muenchow L, Alberti-Servera L, Klein F, Capoferri G, Finke D, Ceredig R, Rolink A, Tsapogas P (2016) Permissive roles of cytokines interleukin-7 and Flt3 ligand in mouse B-cell lineage commitment. Proc Natl Acad Sci U S A 113(50):E8122–E8130

    Google Scholar 

  34. Sokolik C, Liu Y, Bauer D, McPherson J, Broeker M, Heimberg G, Qi LS, Sivak DA, Thomson M (2015) Transcription factor competition allows embryonic stem cells to distinguish authentic signals from noise. Cell Syst 1(2):117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato GJ, Gladwin MT, Steinberg MH (2007) Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 21:37–47

    Article  PubMed  Google Scholar 

  36. Capell BC, Collins FS (2006) Human laminopathies: nuclei gone genetically awry. Nat Rev Genet 7(12):940–952

    Article  CAS  PubMed  Google Scholar 

  37. Roberts NJ, Vogelstein JT, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE (2012) The predictive capacity of personal genome sequencing. Sci Transl Med 4(133):133ra58

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paldi A (2012) What makes the cell differentiate? Prog Biophys Mol Biol 110:41–43

    Article  PubMed  Google Scholar 

  39. Wagner A, Wright J (2007) Alternative routes and mutational robustness in complex regulatory networks. Biosystems 88(1–2):163–172

    Article  PubMed  Google Scholar 

  40. Mojtahedi M, Skupin A, Zhou J et al (2016) Cell fate decision as high-dimensional critical state transition. PLoS Biol 14(12):e2000640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Richard A, Boullu L, Herbach U, Bonnafoux A, Morin V, Vallin E, Guillemin A, Papili Gao N, Gunawan R, Cosette J, Arnaud O, Kupiec JJ, Espinasse T, Gonin-Giraud S, Gandrillon O (2016) Single-cell-based analysis highlights a surge in cell-to-cell molecular variability preceding irreversible commitment in a differentiation process. PLoS Biol 14(12):e1002585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Po A, Giuliani A, Masiello MG, Cucina A, Catizone A, Ricci G, Chiacchiarini M, Tafani M, Ferretti E, Bizzarri M (2019) Phenotypic transitions enacted by simulated microgravity do not alter coherence in gene transcription profile. NPJ Microgravity 5:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chen L, Liu R, Liu ZP, Li M, Aihara K (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep 2:342–348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Transtrum MK, Machta B, Brown K, Daniels BC, Myers CR, Sethna JP (2015) Perspective: sloppiness and emergent theories in physics, biology, and beyond. J Chem Phys 143:010901–010913

    Article  PubMed  CAS  Google Scholar 

  45. Tanaka G, Tsumoto K, Tsuji S, Aihara K (2008) Bifurcation analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer. Phys D 237:2616–2627

    Article  Google Scholar 

  46. Eriksson JG, Forsén T, Tuomilehto J, Osmond C, Barker DJ (2001) Early growth and coronary heart disease in later life: longitudinal study. BMJ 322(7292):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Giuliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bizzarri, M., Giuliani, A. (2022). Soft Statistical Mechanics for Biology. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 2449. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2095-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2095-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2094-6

  • Online ISBN: 978-1-0716-2095-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics