Skip to main content

Behavioral Paradigms for Assessing Cognitive Functions in the Chronic Social Defeat Stress Model of Depression

  • Protocol
  • First Online:
Translational Research Methods for Major Depressive Disorder

Part of the book series: Neuromethods ((NM,volume 179))

Abstract

Depression is a debilitating mental disorder that affects hundreds of millions of individuals worldwide. Also referred to as major depressive disorder or clinical depression, this disorder is mainly characterized by a persistent feeling of sadness and a loss of interest. There is also substantial evidence showing that depression is frequently accompanied by deficits in cognitive functions, including working memory, learning, and executive functions. Given the high prevalence of poor cognitive functioning in depressed patients, several studies have investigated the link between the two using animal models of depression. Despite significant progress in research, more work is still needed to better understand the association between cognitive impairment and depression. Results of such studies could lead to a better understanding of the pathophysiology of depression and could ultimately pave the way toward new and more efficient therapeutic approaches. In this chapter, we describe some of the behavioral techniques used to assess cognitive function in the chronic social defeat stress mice model, a well-established model of depression. Focus is given on the spontaneous alternation T-maze test and the Morris water maze test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brigitta B (2002) Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 4:7–20

    PubMed  PubMed Central  Google Scholar 

  2. WHO. (2000). Depression. Retrieved from https://www.who.int/news-room/fact-sheets/detail/depression. (Last accessed November 19, 2020)

  3. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Arlington

    Book  Google Scholar 

  4. Albert PR (2015) Why is depression more prevalent in women? J Psychiatry Neurosci 40:219–221

    PubMed  PubMed Central  Google Scholar 

  5. Fakhoury M (2015) New insights into the neurobiological mechanisms of major depressive disorders. Gen Hosp Psychiatry 37:172–177

    PubMed  Google Scholar 

  6. WHO (2017) Depression and other common mental disorders: Global Health estimates. World Health Organization, Geneva. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf (Last accessed November 19, 2020)

    Google Scholar 

  7. Kendler KS, Kuhn JW, Vittum J, Prescott CA, Riley B (2005) The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Arch Gen Psychiatry 62:529–535

    CAS  PubMed  Google Scholar 

  8. Lok A, Bockting CL, Koeter MW, Snieder H, Assies J, Mocking RJ, Vinkers CH, Kahn RS, Boks MP, Schene AH (2013) Interaction between the MTHFR C677T polymorphism and traumatic childhood events predicts depression. Transl Psychiatry 3:e288

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fakhoury M (2016) Revisiting the serotonin hypothesis: implications for major depressive disorders. Mol Neurobiol 53:2778–2786

    CAS  PubMed  Google Scholar 

  10. Albert PR, Benkelfat C, Descarries L (2012) The neurobiology of depression--revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 367:2378–2381

    CAS  Google Scholar 

  11. Clevenger SS, Malhotra D, Dang J, Vanle B, IsHak WW (2018) The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Therapeut Adv Psychopharmacol 8:49–58

    CAS  Google Scholar 

  12. Fakhoury M (2018) Diagnosis of major depressive disorders: clinical and biological perspectives. In: Kim YK (ed) Understanding depression. Springer, Singapore

    Google Scholar 

  13. Lam RW, Kennedy SH, Mclntyre RS, Khullar A (2014) Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry 59:649–654

    PubMed  PubMed Central  Google Scholar 

  14. Gohier B, Ferracci L, Surguladze SA, Lawrence E, El Hage W, Kefi MZ, Allain P, Garre JB, Le Gall D (2009) Cognitive inhibition and working memory in unipolar depression. J Affect Disord 116:100–105

    PubMed  Google Scholar 

  15. Gruber O, Zilles D, Kennel J, Gruber E, Falkai P (2011) A systematic experimental neuropsychological investigation of the functional integrity of working memory circuits in major depression. Eur Arch Psychiatry Clin Neurosci 261:179–184

    PubMed  Google Scholar 

  16. Yu T, Guo M, Garza J, Rendon S, Sun XL, Zhang W, Lu XY (2011) Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction. Int J Neuropsychopharmacol 14:303–317

    PubMed  Google Scholar 

  17. Naismith SL, Hickie IB, Ward PB, Scott E, Little C (2006) Impaired implicit sequence learning in depression: a probe for frontostriatal dysfunction? Psychol Med 36:313–323

    PubMed  Google Scholar 

  18. Darcet F, Mendez-David I, Tritschler L, Gardier AM, Guilloux JP, David DJ (2014) Learning and memory impairments in a neuroendocrine mouse model of anxiety/depression. Front Behav Neurosci 8:136

    PubMed  PubMed Central  Google Scholar 

  19. Fossati P, Ergis AM, Allilaire JF (2002) Executive functioning in unipolar depression: a review. L'Encephale 28:97–107

    CAS  PubMed  Google Scholar 

  20. Bredemeier K, Warren SL, Berenbaum H, Miller GA, Heller W (2016) Executive function deficits associated with current and past major depressive symptoms. J Affect Disord 204:226–233

    PubMed  PubMed Central  Google Scholar 

  21. Pardo JV, Pardo PJ, Humes SW, Posner M (2006) Neurocognitive dysfunction in antidepressant-free, non-elderly patients with unipolar depression: alerting and covert orienting of visuospatial attention. J Affect Disord 92:71–78

    PubMed  Google Scholar 

  22. Sommerfeldt SL, Cullen KR, Han G, Fryza BJ, Houri AK, Klimes-Dougan B (2016) Executive attention impairment in adolescents with major depressive disorder. J Clin Child Adolescent Psychol 53(45):69–83

    Google Scholar 

  23. Fava M, Graves LM, Benazzi F, Scalia MJ, Iosifescu DV, Alpert JE, Papakostas GI (2006) A cross-sectional study of the prevalence of cognitive and physical symptoms during long-term antidepressant treatment. J Clin Psychiatry 67:1754–1759

    PubMed  Google Scholar 

  24. Savitz J, Drevets WC (2009) Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 33:699–771

    PubMed  PubMed Central  Google Scholar 

  25. Duman RS (2014) Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci 16:11–27

    PubMed  PubMed Central  Google Scholar 

  26. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    PubMed  PubMed Central  Google Scholar 

  27. MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16:252–264

    CAS  PubMed  Google Scholar 

  28. Shah PJ, Glabus MF, Goodwin GM, Ebmeier KP (2002) Chronic, treatment-resistant depression and right fronto-striatal atrophy. J Mental Sci 180:434–440

    CAS  Google Scholar 

  29. Lacerda AL, Nicoletti MA, Brambilla P, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2003) Anatomical MRI study of basal ganglia in major depressive disorder. Psychiatry Res 124:129–140

    PubMed  Google Scholar 

  30. von Gunten A, Fox NC, Cipolotti L, Ron MA (2000) A volumetric study of hippocampus and amygdala in depressed patients with subjective memory problems. J Neuropsychiatry Clin Neurosci 12:493–498

    Google Scholar 

  31. Hastings RS, Parsey RV, Oquendo MA, Arango V, Mann JJ (2004) Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology 29:952–959

    PubMed  Google Scholar 

  32. Funahashi S (2017) Prefrontal contribution to decision-making under free-choice conditions. Front Neurosci 11:431

    PubMed  PubMed Central  Google Scholar 

  33. Voss JL, Bridge DJ, Cohen NJ, Walker JA (2017) A closer look at the hippocampus and memory. Trends Cogn Sci 21:577–588

    PubMed  PubMed Central  Google Scholar 

  34. Yavas E., Gonzalez S., Fanselow M.S. (2019). Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory. F1000Research, 8, F1000 faculty Rev-1292

    Google Scholar 

  35. Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res 199:53–60

    PubMed  Google Scholar 

  36. Ruhé HG, Booij J, Veltman DJ, Michel MC, Schene AH (2012) Successful pharmacologic treatment of major depressive disorder attenuates amygdala activation to negative facial expressions: a functional magnetic resonance imaging study. J Clin Psychiatry 73:451–459

    PubMed  Google Scholar 

  37. Mingtian Z, Shuqiao Y, Xiongzhao Z, Jinyao Y, Xueling Z, Xiang W, Yingzi L, Jian L, Wei W (2012) Elevated amygdala activity to negative faces in young adults with early onset major depressive disorder. Psychiatry Res 201:107–112

    PubMed  Google Scholar 

  38. Proulx CD, Hikosaka O, Malinow R (2014) Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17:1146–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Graziane NM, Neumann PA, Dong Y (2018) A focus on reward prediction and the lateral habenula: functional alterations and the Behavioral outcomes induced by drugs of abuse. Front Synapt Neurosci 10:12

    Google Scholar 

  40. Sharma S, Rakoczy S, Brown-Borg H (2010) Assessment of spatial memory in mice. Life Sci 87:521–536

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanila H (2018) Testing cognitive functions in rodent disease models: present pitfalls and future perspectives. Behav Brain Res 352:23–27

    PubMed  Google Scholar 

  42. Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morales-Medina JC, Iannitti T, Freeman A, Caldwell HK (2017) The olfactory bulbectomized rat as a model of depression: the hippocampal pathway. Behav Brain Res 317:562–575

    CAS  PubMed  Google Scholar 

  44. Ikram H, Haleem DJ (2017) Repeated treatment with reserpine as a progressive animal model of depression. Pak J Pharm Sci 30:897–902

    CAS  PubMed  Google Scholar 

  45. Frisbee JC, Brooks SD, Stanley SC, d'Audiffret AC (2015) An unpredictable chronic mild stress protocol for instigating depressive symptoms, Behavioral changes and negative health outcomes in rodents. JoVE 106:53109

    Google Scholar 

  46. Han F, Nakano T, Yamamoto Y, Shioda N, Lu YM, Fukunaga K (2009) Improvement of depressive behaviors by nefiracetam is associated with activation of CaM kinases in olfactory bulbectomized mice. Brain Res 1265:205–214

    CAS  PubMed  Google Scholar 

  47. Amchova P, Kucerova J, Giugliano V, Babinska Z, Zanda MT, Scherma M, Dusek L, Fadda P, Micale V, Sulcova A, Fratta W, Fattore L (2014) Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms. Front Pharmacol 5:44

    PubMed  PubMed Central  Google Scholar 

  48. Rinwa P, Kumar A (2013) Quercetin suppresses microglial neuroinflammatory response and induce antidepressant-like effect in olfactory bulbectomized rats. Neuroscience 255:86–98

    CAS  PubMed  Google Scholar 

  49. Morales-Medina JC, Juarez I, Venancio-García E, Cabrera SN, Menard C, Yu W, Flores G, Mechawar N, Quirion R (2013) Impaired structural hippocampal plasticity is associated with emotional and memory deficits in the olfactory bulbectomized rat. Neuroscience 236:233–243

    CAS  PubMed  Google Scholar 

  50. Moriguchi S, Han F, Nakagawasai O, Tadano T, Fukunaga K (2006) Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J Neurochem 97:22–29

    CAS  PubMed  Google Scholar 

  51. Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74:299–316

    CAS  PubMed  Google Scholar 

  52. Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    PubMed  Google Scholar 

  53. Zhang S, Liu X, Sun M, Zhang Q, Li T, Li X, Xu J, Zhao X, Chen D, Feng X (2018) Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and traditional Chinese medicine (TCM). BBF 14:13

    PubMed  PubMed Central  Google Scholar 

  54. Antkiewicz-Michaluk L, Wąsik A, Możdżeń E, Romańska I, Michaluk J (2014) Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat. Neurotox Res 26:85–98

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Willner P (2016) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93

    PubMed  PubMed Central  Google Scholar 

  56. Mineur YS, Belzung C, Crusio WE (2006) Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res 175:43–50

    PubMed  Google Scholar 

  57. Wang Q, Timberlake MA 2nd, Prall K, Dwivedi Y (2017) The recent progress in animal models of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 77:99–109

    Google Scholar 

  58. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147

    PubMed  PubMed Central  Google Scholar 

  59. Venzala E, García-García AL, Elizalde N, Delagrange P, Tordera RM (2012) Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology 224:313–325

    CAS  PubMed  Google Scholar 

  60. Golden SA, Covington HE 3rd, Berton O, Russo SJ (2011) A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6:1183–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    CAS  PubMed  Google Scholar 

  62. Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53:983–993

    CAS  PubMed  Google Scholar 

  63. Covington HE 3rd, Miczek KA (2005) Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology 183:331–340

    CAS  PubMed  Google Scholar 

  64. Meerlo P., Overkamp G.J., Daan S., Van Den Hoofdakker R.H., Koolhaas J.M. (1996). Changes in behaviour and body weight following a single or double social defeat in rats. Stress (Amsterdam, Netherlands), 1, 21–32

    Google Scholar 

  65. Covington HE, Miczek KA (2001) Repeated social-defeat stress, cocaine or morphine. Psychopharmacology 158:388–398

    CAS  PubMed  Google Scholar 

  66. Nasrallah P, Haidar EA, Stephan JS, El Hayek L, Karnib N, Khalifeh M, Barmo N, Jabre V, Houbeika R, Ghanem A, Nasser J, Zeeni N, Bassil M, Sleiman SF (2019) Branched-chain amino acids mediate resilience to chronic social defeat stress by activating BDNF/TRKB signaling. Neurobiol Stress 11:100170

    PubMed  PubMed Central  Google Scholar 

  67. Jasnow AM, Drazen DL, Huhman KL, Nelson RJ, Demas GE (2001) Acute and chronic social defeat suppresses humoral immunity of male Syrian hamsters (Mesocricetus auratus). Horm Behav 40:428–433

    CAS  PubMed  Google Scholar 

  68. Nakajo H, Tsuboi T, Okamoto H (2019) The behavioral paradigm to induce repeated social defeats in zebrafish. Neurosci Res S0168-0102(19):30590–30595

    Google Scholar 

  69. Rose J, Rillich J, Stevenson PA (2017) Chronic social defeat induces long-term behavioral depression of aggressive motivation in an invertebrate model system. PLoS One 12:e0184121

    PubMed  PubMed Central  Google Scholar 

  70. Harris AZ, Atsak P, Bretton ZH, Holt ES, Alam R, Morton MP, Abbas AI, Leonardo ED, Bolkan SS, Hen R, Gordon JA (2018) A novel method for chronic social defeat stress in female mice. Neuropsychopharmacology 43:1276–1283

    PubMed  Google Scholar 

  71. Deacon RM, Rawlins JN (2006) T-maze alternation in the rodent. Nat Protoc 1:7–12

    PubMed  Google Scholar 

  72. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    PubMed  PubMed Central  Google Scholar 

  73. Klawonn AM, Fritz M (2021) Immune-to-brain signaling effects on the neural substrate for reward: behavioral models of aversion, anhedonia, and despair. In: Fakhoury M (ed) The brain reward system. Springer, New York. https://doi.org/10.1007/978-1-0716-1146-3

    Chapter  Google Scholar 

  74. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Google Scholar 

  75. Morris RGM (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  Google Scholar 

  76. Morris RGM (1993) An attempt to dissociate 'spatial-mapping' and 'working-memory' theories of hippocampal function. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, New York, pp 405–432

    Google Scholar 

  77. Kallai J, Makany T, Karadi K, Jacobs WJ (2005) Spatial orientation strategies in Morris-type virtual water task for humans. Behav Brain Res 159:187–196

    PubMed  Google Scholar 

  78. Iivonen H, Nurminen L, Harri M, Tanila H, Puoliväli J (2003) Hypothermia in mice tested in Morris water maze. Behav Brain Res 141:207–213

    PubMed  Google Scholar 

  79. Jianhua F, Wei W, Xiaomei L, Shao-Hui W (2017) Chronic social defeat stress leads to changes of behaviour and memory-associated proteins of young mice. Behav Brain Res 316:136–144

    PubMed  Google Scholar 

  80. Jin HM, Shrestha MS, Bagalkot TR, Cui Y, Yadav BK, Chung YC (2015) The effects of social defeat on behavior and dopaminergic markers in mice. Neuroscience 288:167–177

    CAS  PubMed  Google Scholar 

  81. Jung SH, Brownlow ML, Pellegrini M, Jankord R (2017) Divergence in Morris water maze-based cognitive performance under chronic stress is associated with the hippocampal whole transcriptomic modification in mice. Front Mol Neurosci 10:275

    PubMed  PubMed Central  Google Scholar 

  82. Monleón S, Duque A, Vinader-Caerols C (2016) Effects of several degrees of chronic social defeat stress on emotional and spatial memory in CD1 mice. Behav Process 124:23–31

    Google Scholar 

  83. Cataldo MG, Nobile M, Lorusso ML, Battaglia M, Molteni M (2005) Impulsivity in depressed children and adolescents: a comparison between behavioral and neuropsychological data. Psychiatry Res 136:123–133

    PubMed  Google Scholar 

  84. Rose EJ, Ebmeier KP (2006) Pattern of impaired working memory during major depression. J Affect Disord 90:149–161

    CAS  PubMed  Google Scholar 

  85. Christopher G, MacDonald J (2005) The impact of clinical depression on working memory. Cogn Neuropsychiatry 10:379–399

    PubMed  Google Scholar 

  86. Butters MA, Whyte EM, Nebes RD, Begley AE, Dew MA, Mulsant BH, Zmuda MD, Bhalla R, Meltzer CC, Pollock BG, Reynolds CF 3rd, Becker JT (2004) The nature and determinants of neuropsychological functioning in late-life depression. Arch Gen Psychiatry 61:587–595

    PubMed  Google Scholar 

  87. Porter RJ, Gallagher P, Thompson JM, Young AH (2003) Neurocognitive impairment in drug-free patients with major depressive disorder. J Mental Sci 182:214–220

    Google Scholar 

  88. Martinez M, Calvo-Torrent A, Pico-Alfonso MA (1998) Social defeat and subordination as models of social stress in laboratory rodents. Aggress Behav 24:241–256

    Google Scholar 

  89. Malatynska E, Knapp RJ (2005) Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev 29:715–737

    PubMed  Google Scholar 

  90. Zhang TR, Larosa A, Di Raddo ME, Wong V, Wong AS, Wong TP (2019) Negative memory engrams in the hippocampus enhance the susceptibility to chronic social defeat stress. J Neurosci 39:7576–7590

    PubMed  PubMed Central  Google Scholar 

  91. Perini G, Cotta RM, Sinforiani E, Bernini S, Petrachi R, Costa A (2019) Cognitive impairment in depression: recent advances and novel treatments. Neuropsychiatr Dis Treat 15:1249–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wenk GL (1998) Assessment of spatial memory using radial arm and Morris water mazes. In: Crawley JN, Gerfen C, McKay R, Rogawski M, Sibley D, Skolnick P (eds) Current protocols in neuroscience. Wiley, New York

    Google Scholar 

  93. Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris water maze in the study of memory and learning. Int J Neurosci 48:29–69

    CAS  PubMed  Google Scholar 

  94. D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    CAS  PubMed  Google Scholar 

  95. Walther T, Voigt JP, Fukamizu A, Fink H, Bader M (1999) Learning and anxiety in angiotensin-deficient mice. Behav Brain Res 100:1–4

    CAS  PubMed  Google Scholar 

  96. Heinrichs SC, Stenzel-Poore MP, Gold LH, Battenberg E, Bloom FE, Koob GF, Vale WW, Pich EM (1996) Learning impairment in transgenic mice with central overexpression of corticotropin-releasing factor. Neuroscience 74:303–311

    CAS  PubMed  Google Scholar 

  97. Sandi C (1998) The role and mechanisms of action of glucocorticoid involvement in memory storage. Neural Plast 6:41–52

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yayou K, Takeda M, Tsubone H, Sugano S, Doi K (1993) The disturbance of water-maze task performance in mice with EMC-D virus infection. J Vet Med Sci 55:341–342

    CAS  PubMed  Google Scholar 

  99. McLean JH, Shipley MT, Bernstein DI, Corbett D (1993) Selective lesions of neural pathways following viral inoculation of the olfactory bulb. Exp Neurol 122:209–222

    CAS  PubMed  Google Scholar 

  100. Gibertini M, Newton C, Friedman H, Klein TW (1995) Spatial learning impairment in mice infected with legionella pneumophila or administered exogenous interleukin-1-beta. Brain Behav Immun 9:113–128

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fakhoury, M., Fritz, M., Sleiman, S.F. (2022). Behavioral Paradigms for Assessing Cognitive Functions in the Chronic Social Defeat Stress Model of Depression. In: Kim, YK., Amidfar, M. (eds) Translational Research Methods for Major Depressive Disorder. Neuromethods, vol 179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2083-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2083-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2082-3

  • Online ISBN: 978-1-0716-2083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics