Skip to main content

Magnetic Resonance Imaging as a Translational Research Tool for Major Depression

  • Protocol
  • First Online:
Translational Research Methods for Major Depressive Disorder

Part of the book series: Neuromethods ((NM,volume 179))

  • 605 Accesses

Abstract

Major depressive disorder (MDD, also known as major depression) is a major health issue in the modern society. The translational research in MDD can help us understand the pathophysiology of MDD. In the neuroimaging field, magnetic resonance imaging (MRI) will be a major tool for the translational research. In this chapter, several methods of MRI category will be addressed, such as the task functional MRI (T-FMRI), resting-state functional MRI (Rs-FMRI), diffusion tensor imaging (DTI), diffusion spectrum imaging (DSI), voxel-based morphometry (VBM), and magnetic resonance spectroscopy (MRS). The theory, preparation, and details of these MRI-related methods will be addressed in this review article. Basically, these methods can compensate each other in the representations of biological meaning. The functional characteristics of MRS, T-FMRI, and Rs-FMRI can enrich the functional fundamentals of structural characteristics of DTI and VBM. Therefore, theoretically, the “multimodal MRI” methods will be a future trend of neuroimaging research to help us make a sophisticated differentiation of pathophysiology subtype of MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA,https://doi.org/10.1016/S0140-6736(12)61689-4

  2. Greenberg PE, Fournier AA, Sisitsky T, Pike CT, Kessler RC (2015) The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J Clin Psychiatry 76(2):155–162. https://doi.org/10.4088/JCP.14m09298

    Article  PubMed  Google Scholar 

  3. Souery D, Oswald P, Massat I, Bailer U, Bollen J, Demyttenaere K, Kasper S, Lecrubier Y, Montgomery S, Serretti A, Zohar J, Mendlewicz J (2007) Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J Clin Psychiatry 68(7):1062–1070

    Article  PubMed  Google Scholar 

  4. Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM (2012) Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord 139(1):56–65. https://doi.org/10.1016/j.jad.2011.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Tol MJ, van der Wee NJ, van den Heuvel OA, Nielen MM, Demenescu LR, Aleman A, Renken R, van Buchem MA, Zitman FG, Veltman DJ (2010) Regional brain volume in depression and anxiety disorders. Arch Gen Psychiatry 67(10):1002–1011. https://doi.org/10.1001/archgenpsychiatry.2010.121

    Article  PubMed  Google Scholar 

  6. Lai CH, Hsu YY, Wu YT (2010) First episode drug-naive major depressive disorder with panic disorder: gray matter deficits in limbic and default network structures. Eur Neuropsychopharmacol 20(10):676–682. https://doi.org/10.1016/j.euroneuro.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  7. de Kwaasteniet B, Ruhe E, Caan M, Rive M, Olabarriaga S, Groefsema M, Heesink L, van Wingen G, Denys D (2013) Relation between structural and functional connectivity in major depressive disorder. Biol Psychiatry 74(1):40–47. https://doi.org/10.1016/j.biopsych.2012.12.024

    Article  PubMed  Google Scholar 

  8. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A 106(6):1942–1947. https://doi.org/10.1073/pnas.0812686106

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gorka SM, Young CB, Klumpp H, Kennedy AE, Francis J, Ajilore O, Langenecker SA, Shankman SA, Craske MG, Stein MB, Phan KL (2019) Emotion-based brain mechanisms and predictors for SSRI and CBT treatment of anxiety and depression: a randomized trial. Neuropsychopharmacology 44(9):1639–1648. https://doi.org/10.1038/s41386-019-0407-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Connolly CG, Ho TC, Blom EH, LeWinn KZ, Sacchet MD, Tymofiyeva O, Simmons AN, Yang TT (2017) Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. J Affect Disord 207:86–94. https://doi.org/10.1016/j.jad.2016.09.026

    Article  PubMed  Google Scholar 

  11. Smoski MJ, Keng SL, Ji JL, Moore T, Minkel J, Dichter GS (2015) Neural indicators of emotion regulation via acceptance vs reappraisal in remitted major depressive disorder. Soc Cogn Affect Neurosci 10(9):1187–1194. https://doi.org/10.1093/scan/nsv003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Groenewold NA, Roest AM, Renken RJ, Opmeer EM, Veltman DJ, van der Wee NJ, de Jonge P, Aleman A, Harmer CJ (2015) Cognitive vulnerability and implicit emotional processing: imbalance in frontolimbic brain areas? Cogn Affect Behav Neurosci 15(1):69–79. https://doi.org/10.3758/s13415-014-0316-5

    Article  PubMed  Google Scholar 

  13. Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935:107–117

    Article  CAS  PubMed  Google Scholar 

  14. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222. S1364-6613(00)01483-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Rushworth MF, Behrens TE, Rudebeck PH, Walton ME (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 11(4):168–176. https://doi.org/10.1016/j.tics.2007.01.004. S1364-6613(07)00053-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Yucel M, Wood SJ, Fornito A, Riffkin J, Velakoulis D, Pantelis C (2003) Anterior cingulate dysfunction: implications for psychiatric disorders? J Psychiatry Neurosci 28(5):350–354

    PubMed  PubMed Central  Google Scholar 

  17. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306

    Article  PubMed  Google Scholar 

  18. Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatr Clin Neurosci 9(3):471–481

    Article  CAS  Google Scholar 

  19. Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10(9):1116–1124. https://doi.org/10.1038/nn1944. nn1944 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li M, Demenescu LR, Colic L, Metzger CD, Heinze HJ, Steiner J, Speck O, Fejtova A, Salvadore G, Walter M (2017) Temporal dynamics of antidepressant ketamine effects on glutamine cycling follow regional fingerprints of AMPA and NMDA receptor densities. Neuropsychopharmacology 42(6):1201–1209. https://doi.org/10.1038/npp.2016.184

    Article  CAS  PubMed  Google Scholar 

  21. Bae JN, MacFall JR, Krishnan KR, Payne ME, Steffens DC, Taylor WD (2006) Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol Psychiatry 60(12):1356–1363. https://doi.org/10.1016/j.biopsych.2006.03.052

    Article  PubMed  Google Scholar 

  22. Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, Reiser M, Moller HJ, Meisenzahl EM (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65(10):1156–1165. https://doi.org/10.1001/archpsyc.65.10.1156

    Article  PubMed  Google Scholar 

  23. Li CT, Lin CP, Chou KH, Chen IY, Hsieh JC, Wu CL, Lin WC, Su TP (2010) Structural and cognitive deficits in remitting and non-remitting recurrent depression: a voxel-based morphometric study. NeuroImage 50(1):347–356. https://doi.org/10.1016/j.neuroimage.2009.11.021

    Article  PubMed  Google Scholar 

  24. Liao C, Feng Z, Zhou D, Dai Q, Xie B, Ji B, Wang X, Wang X (2012) Dysfunction of fronto-limbic brain circuitry in depression. Neuroscience 201:231–238. https://doi.org/10.1016/j.neuroscience.2011.10.053

    Article  CAS  PubMed  Google Scholar 

  25. Zavorotnyy M, Zollner R, Rekate H, Dietsche P, Bopp M, Sommer J, Meller T, Krug A, Nenadic I (2020) Intermittent theta-burst stimulation moderates interaction between increment of N-Acetyl-Aspartate in anterior cingulate and improvement of unipolar depression. Brain Stimul 13(4):943–952. https://doi.org/10.1016/j.brs.2020.03.015

    Article  PubMed  Google Scholar 

  26. Watters AJ, Carpenter JS, Harris AWF, Korgaonkar MS, Williams LM (2019) Characterizing neurocognitive markers of familial risk for depression using multi-modal imaging, behavioral and self-report measures. J Affect Disord 253:336–342. https://doi.org/10.1016/j.jad.2019.04.078

    Article  PubMed  Google Scholar 

  27. Tozzi L, Goldstein-Piekarski AN, Korgaonkar MS, Williams LM (2019) Connectivity of the cognitive control network during response inhibition as a predictive and response biomarker in major depression: evidence from a randomized clinical trial. Biol Psychiatry 87:462. https://doi.org/10.1016/j.biopsych.2019.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sheline YI (2000) 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 48(8):791–800

    Article  CAS  PubMed  Google Scholar 

  29. Egger K, Schocke M, Weiss E, Auffinger S, Esterhammer R, Goebel G, Walch T, Mechtcheriakov S, Marksteiner J (2008) Pattern of brain atrophy in elderly patients with depression revealed by voxel-based morphometry. Psychiatry Res 164(3):237–244. https://doi.org/10.1016/j.pscychresns.2007.12.018

    Article  PubMed  Google Scholar 

  30. Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR, Gordon E, Kemp AH, Williams LM (2009) Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol Psychiatry 14(7):681–695. https://doi.org/10.1038/mp.2008.143

    Article  CAS  PubMed  Google Scholar 

  31. van Eijndhoven P, van Wingen G, Fernandez G, Rijpkema M, Verkes RJ, Buitelaar J, Tendolkar I (2011) Amygdala responsivity related to memory of emotionally neutral stimuli constitutes a trait factor for depression. NeuroImage 54(2):1677–1684. https://doi.org/10.1016/j.neuroimage.2010.08.040

    Article  PubMed  Google Scholar 

  32. van Tol MJ, Demenescu LR, van der Wee NJ, Kortekaas R, Marjan MAN, Boer JA, Renken RJ, van Buchem MA, Zitman FG, Aleman A, Veltman DJ (2012) Functional magnetic resonance imaging correlates of emotional word encoding and recognition in depression and anxiety disorders. Biol Psychiatry 71(7):593–602. https://doi.org/10.1016/j.biopsych.2011.11.016

    Article  PubMed  Google Scholar 

  33. Herringa RJ, Birn RM, Ruttle PL, Burghy CA, Stodola DE, Davidson RJ, Essex MJ (2013) Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proc Natl Acad Sci U S A 110(47):19119–19124. https://doi.org/10.1073/pnas.1310766110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leaver AM, Vasavada M, Kubicki A, Wade B, Loureiro J, Hellemann G, Joshi SH, Woods RP, Espinoza R, Narr KL (2020) Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy. Mol Psychiatry 26:4288. https://doi.org/10.1038/s41380-020-0666-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gray JP, Muller VI, Eickhoff SB, Fox PT (2020) Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am J Psychiatry 177(5):422–434. https://doi.org/10.1176/appi.ajp.2019.19050560

    Article  PubMed  PubMed Central  Google Scholar 

  36. Le Bihan D (1996) Functional MRI of the brain principles, applications and limitations. J Neuroradiol 23(1):1–5

    PubMed  Google Scholar 

  37. Richardson FM, Price CJ (2009) Structural MRI studies of language function in the undamaged brain. Brain Struct Funct 213(6):511–523. https://doi.org/10.1007/s00429-009-0211-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bastiani M, Roebroeck A (2015) Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI. Front Neuroanat 9:77. https://doi.org/10.3389/fnana.2015.00077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chow MS, Wu SL, Webb SE, Gluskin K, Yew DT (2017) Functional magnetic resonance imaging and the brain: a brief review. World J Radiol 9(1):5–9. https://doi.org/10.4329/wjr.v9.i1.5

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen W, Liu X, Zhu XH, Zhang N (2009) Functional MRI study of brain function under resting and activated states. Annu Int Conf IEEE Eng Med Biol Soc 2009:4061–4063. https://doi.org/10.1109/IEMBS.2009.5333175

    Article  PubMed  Google Scholar 

  41. Glover GH (2011) Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 22(2):133–139., vii. https://doi.org/10.1016/j.nec.2010.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  42. Matthews PM, Jezzard P (2004) Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 75(1):6–12

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Andellini M, Cannata V, Gazzellini S, Bernardi B, Napolitano A (2015) Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review. J Neurosci Methods 253:183–192. https://doi.org/10.1016/j.jneumeth.2015.05.020

    Article  PubMed  Google Scholar 

  44. Guye M, Bettus G, Bartolomei F, Cozzone PJ (2010) Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. MAGMA 23(5–6):409–421. https://doi.org/10.1007/s10334-010-0205-z

    Article  PubMed  Google Scholar 

  45. Joo SH, Lim HK, Lee CU (2016) Three large-scale functional brain networks from resting-state functional MRI in subjects with different levels of cognitive impairment. Psychiatry Investig 13(1):1–7. https://doi.org/10.4306/pi.2016.13.1.1

    Article  PubMed  Google Scholar 

  46. Smyser CD, Snyder AZ, Neil JJ (2011) Functional connectivity MRI in infants: exploration of the functional organization of the developing brain. NeuroImage 56(3):1437–1452. https://doi.org/10.1016/j.neuroimage.2011.02.073

    Article  PubMed  Google Scholar 

  47. Thompson GJ (2018) Neural and metabolic basis of dynamic resting state fMRI. NeuroImage 180(Pt B):448–462. https://doi.org/10.1016/j.neuroimage.2017.09.010

    Article  PubMed  Google Scholar 

  48. Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW, Barch DM, Ugurbil K, Van Essen DC (2013) Functional connectomics from resting-state fMRI. Trends Cogn Sci 17(12):666–682. https://doi.org/10.1016/j.tics.2013.09.016

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4(3):316–329. https://doi.org/10.1016/j.nurt.2007.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee SK, Kim DI, Kim J, Kim DJ, Kim HD, Kim DS, Mori S (2005) Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. RadioGraphics 25(1):53–65.; discussion 66–58. https://doi.org/10.1148/rg.251045085

    Article  PubMed  Google Scholar 

  51. Cascio CJ, Gerig G, Piven J (2007) Diffusion tensor imaging: application to the study of the developing brain. J Am Acad Child Adolesc Psychiatry 46(2):213–223. https://doi.org/10.1097/01.chi.0000246064.93200.e8

    Article  PubMed  Google Scholar 

  52. Hennig J, Speck O, Koch MA, Weiller C (2003) Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J Magn Reson Imaging 18(1):1–15. https://doi.org/10.1002/jmri.10330

    Article  PubMed  Google Scholar 

  53. Meinert S, Leehr EJ, Grotegerd D, Repple J, Forster K, Winter NR, Enneking V, Fingas SM, Lemke H, Waltemate L, Stein F, Brosch K, Schmitt S, Meller T, Linge A, Krug A, Nenadic I, Jansen A, Hahn T, Redlich R, Opel N, Schubotz RI, Baune BT, Kircher T, Dannlowski U (2020) White matter fiber microstructure is associated with prior hospitalizations rather than acute symptomatology in major depressive disorder. Psychol Med:1–9. https://doi.org/10.1017/S0033291720002950

  54. Liu X, He C, Fan D, Zhu Y, Zang F, Wang Q, Zhang H, Zhang Z, Zhang H, Xie C (2020) Disrupted rich-club network organization and individualized identification of patients with major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 2020:110074. https://doi.org/10.1016/j.pnpbp.2020.110074

    Article  Google Scholar 

  55. van Velzen LS, Kelly S, Isaev D, Aleman A, Aftanas LI, Bauer J, Baune BT, Brak IV, Carballedo A, Connolly CG, Couvy-Duchesne B, Cullen KR, Danilenko KV, Dannlowski U, Enneking V, Filimonova E, Forster K, Frodl T, Gotlib IH, Groenewold NA, Grotegerd D, Harris MA, Hatton SN, Hawkins EL, Hickie IB, Ho TC, Jansen A, Kircher T, Klimes-Dougan B, Kochunov P, Krug A, Lagopoulos J, Lee R, Lett TA, Li M, MacMaster FP, Martin NG, McIntosh AM, McLellan Q, Meinert S, Nenadic I, Osipov E, Penninx B, Portella MJ, Repple J, Roos A, Sacchet MD, Samann PG, Schnell K, Shen X, Sim K, Stein DJ, van Tol MJ, Tomyshev AS, Tozzi L, Veer IM, Vermeiren R, Vives-Gilabert Y, Walter H, Walter M, van der Wee NJA, van der Werff SJA, Schreiner MW, Whalley HC, Wright MJ, Yang TT, Zhu A, Veltman DJ, Thompson PM, Jahanshad N, Schmaal L (2020) White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Psychiatry 25(7):1511–1525. https://doi.org/10.1038/s41380-019-0477-2

    Article  PubMed  Google Scholar 

  56. Lai CH, Wu YT (2014) Alterations in white matter micro-integrity of the superior longitudinal fasciculus and anterior thalamic radiation of young adult patients with depression. Psychol Med 44(13):2825–2832. https://doi.org/10.1017/S0033291714000440

    Article  CAS  PubMed  Google Scholar 

  57. Lai CH, Wu YT (2016) The white matter microintegrity alterations of neocortical and limbic association fibers in major depressive disorder and panic disorder: the comparison. Medicine 95(9):e2982. https://doi.org/10.1097/MD.0000000000002982

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ashburner J, Friston KJ (2000) Voxel-based morphometry--the methods. NeuroImage 11(6 Pt 1):805–821. https://doi.org/10.1006/nimg.2000.0582

    Article  CAS  PubMed  Google Scholar 

  59. Bigler ED (2015) Structural image analysis of the brain in neuropsychology using magnetic resonance imaging (MRI) techniques. Neuropsychol Rev 25(3):224–249. https://doi.org/10.1007/s11065-015-9290-0

    Article  PubMed  Google Scholar 

  60. Buonocore MH, Maddock RJ (2015) Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Rev Neurosci 26(6):609–632. https://doi.org/10.1515/revneuro-2015-0010

    Article  PubMed  Google Scholar 

  61. Brady TJ, Wismer GL, Buxton R, Stark DD, Rosen BR (1986) Magnetic resonance chemical shift imaging. In: Magnetic resonance annual. Raven Press, New York, NY, pp 55–80

    Google Scholar 

  62. Klose U (2008) Measurement sequences for single voxel proton MR spectroscopy. Eur J Radiol 67(2):194–201. https://doi.org/10.1016/j.ejrad.2008.03.023

    Article  PubMed  Google Scholar 

  63. Dreher W, Erhard P, Leibfritz D (2011) Fast three-dimensional proton spectroscopic imaging of the human brain at 3 T by combining spectroscopic missing pulse steady-state free precession and echo planar spectroscopic imaging. Magn Reson Med 66(6):1518–1525. https://doi.org/10.1002/mrm.22963

    Article  PubMed  Google Scholar 

  64. Posse S, Otazo R, Tsai SY, Yoshimoto AE, Lin FH (2009) Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging. Magn Reson Med 61(3):541–547. https://doi.org/10.1002/mrm.21855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22(1):394–400. https://doi.org/10.1016/j.neuroimage.2003.12.030

    Article  PubMed  Google Scholar 

  66. Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, Wang YF, Zang YF (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141. https://doi.org/10.1016/j.jneumeth.2008.04.012. S0165-0270(08)00245-8 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bangaru S, Grzadzinski R, Evans AC, Zang YF, Castellanos FX, Milham MP (2010) Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci 30(45):15034–15043. https://doi.org/10.1523/JNEUROSCI.2612-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  69. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711. https://doi.org/10.1038/nrn2201. nrn2201 [pii]

    Article  CAS  PubMed  Google Scholar 

  70. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. NeuroImage 53(4):1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041

    Article  PubMed  Google Scholar 

  71. Hong SB, Zalesky A, Cocchi L, Fornito A, Choi EJ, Kim HH, Suh JE, Kim CD, Kim JW, Yi SH (2013) Decreased functional brain connectivity in adolescents with internet addiction. PLoS One 8(2):e57831. https://doi.org/10.1371/journal.pone.0057831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342. https://doi.org/10.1093/cercor/bhi016

    Article  PubMed  Google Scholar 

  73. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  74. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. NeuroImage 45(1 Suppl):S173–S186. https://doi.org/10.1016/j.neuroimage.2008.10.055. S1053-8119(08)01204-4 [pii]

    Article  PubMed  Google Scholar 

  75. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156. S1361841501000366 [pii]

    Article  CAS  PubMed  Google Scholar 

  76. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155. https://doi.org/10.1002/hbm.10062

    Article  PubMed  PubMed Central  Google Scholar 

  77. Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL, Robson MD, Jones DK, Klein JC, Bartsch AJ, Behrens TE (2007) Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2(3):499–503. https://doi.org/10.1038/nprot.2007.45

    Article  PubMed  Google Scholar 

  78. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25. https://doi.org/10.1002/hbm.1058

    Article  PubMed  Google Scholar 

  79. Colloby SJ, Firbank MJ, Vasudev A, Parry SW, Thomas AJ, O’Brien JT (2011) Cortical thickness and VBM-DARTEL in late-life depression. J Affect Disord 133(1–2):158–164. https://doi.org/10.1016/j.jad.2011.04.010

    Article  PubMed  Google Scholar 

  80. Thomas AG, Marrett S, Saad ZS, Ruff DA, Martin A, Bandettini PA (2009) Functional but not structural changes associated with learning: an exploration of longitudinal Voxel-Based Morphometry (VBM). NeuroImage 48:117

    Article  PubMed  Google Scholar 

  81. Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, Kaiser J, Spencer T, Faraone SV, Makris N (2011) Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biol Psychiatry 69(9):857–866. https://doi.org/10.1016/j.biopsych.2010.09.053. S0006-3223(10)01054-1 [pii]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lai, CH. (2022). Magnetic Resonance Imaging as a Translational Research Tool for Major Depression. In: Kim, YK., Amidfar, M. (eds) Translational Research Methods for Major Depressive Disorder. Neuromethods, vol 179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2083-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2083-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2082-3

  • Online ISBN: 978-1-0716-2083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics