Skip to main content

Peptide Backbone Modifications for the Assessment of Cleavage Site Relevance in Precursors of Signaling Peptides

  • Protocol
  • First Online:
Plant Proteases and Plant Cell Death

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2447))

  • 956 Accesses

Abstract

The physiological relevance of site-specific precursor processing for the biogenesis of peptide hormones and growth factors can be demonstrated in genetic complementation experiments, in which a gain of function is observed for the cleavable wild-type precursor, but not for a non-cleavable precursor mutant. Similarly, cleavable and non-cleavable synthetic peptides can be used in bioassays to test whether processing is required for bioactivity. In genetic complementation experiments, site-directed mutagenesis has to be used to mask a processing site against proteolysis. Peptide-based bioassays have the distinctive advantage that peptides can be protected against proteolytic cleavage by backbone modifications, i.e., without changing the amino acid sequence. Peptide backbone modifications have been employed to increase the metabolic stability of peptide drugs, and in basic research, to investigate whether processing at a certain site is required for precursor maturation and formation of the bioactive peptide. For this approach, it is important to show that modification of the peptide backbone has the desired effect and does indeed protect the respective peptide bond against proteolysis. This can be accomplished with the MALDI-TOF mass spectrometry-based assay we describe here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, Vartapetian AB, Martínez D, Guiamét JJ, Sueldo DJ, van der Hoorn RAL, Ramírez V, Vera P (2018) From structure to function—a family portrait of plant subtilases. New Phytol 218(3):901–915. https://doi.org/10.1111/nph.14582

    Article  PubMed  Google Scholar 

  2. Stührwohldt N, Schaller A (2019) Regulation of plant peptide hormones and growth factors by post-translational modification. Plant Biol 21(S1):49–63. https://doi.org/10.1111/plb.12881

    Article  CAS  PubMed  Google Scholar 

  3. Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220(2):183–197. https://doi.org/10.1007/s00425-004-1407-2

    Article  CAS  PubMed  Google Scholar 

  4. Van Der Hoorn RAL (2008) Plant proteases: from phenotypes to molecular mechanisms. Annu Rev Plant Biol 59:191–223. https://doi.org/10.1146/annurev.arplant.59.032607.092835

    Article  CAS  PubMed  Google Scholar 

  5. Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8(3):245–257. https://doi.org/10.1038/nrm2120

    Article  CAS  PubMed  Google Scholar 

  6. Schardon K, Hohl M, Graff L, Schulze W, Pfannstiel J, Stintzi A, Schaller A (2016) Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science 354(6319):1594–1597. https://doi.org/10.1126/science.aai8550

    Article  CAS  PubMed  Google Scholar 

  7. Ghorbani S, Hoogewijs K, Pečenková T, Fernandez A, Inzé A, Eeckhout D, Kawa D, De Jaeger G, Beeckman T, Madder A, Van Breusegem F, Hilson P (2016) The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation. J Exp Bot 67(16):4877–4887. https://doi.org/10.1093/jxb/erw241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stührwohldt N, Ehinger A, Thellmann K, Schaller A (2020) Processing and formation of bioactive CLE40 peptide are controlled by posttranslational proline hydroxylation. Plant Physiol 184(3):1573–1584. https://doi.org/10.1104/pp.20.00528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reichardt S, Piepho H-P, Stintzi A, Schaller A (2020) Peptide signaling for drought-induced tomato flower drop. Science 367(6485):1482–1485. https://doi.org/10.1126/science.aaz5641

    Article  CAS  PubMed  Google Scholar 

  10. Grauer A, König B (2009) Peptidomimetics—a versatile route to biologically active compounds. Eur J Org Chem 30:5099–5111. https://doi.org/10.1002/ejoc.200900599

    Article  CAS  Google Scholar 

  11. Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12(3):292–296. https://doi.org/10.1016/j.cbpa.2008.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Syrén P-O (2018) Enzymatic hydrolysis of tertiary amide bonds by anti nucleophilic attack and protonation. J Org Chem 83(21):13543–13548. https://doi.org/10.1021/acs.joc.8b02053

    Article  CAS  PubMed  Google Scholar 

  13. Syrén P-O, Hult K (2011) Amidases have a hydrogen bond that facilitates nitrogen inversion, but esterases have not. ChemCatChem 3(5):853–860. https://doi.org/10.1002/cctc.201000448

    Article  CAS  Google Scholar 

  14. Bizzozero SA, Dutler H (1981) Stereochemical aspects of peptide hydrolysis catalyzed by serine proteases of the chymotrypsin type. Bioorg Chem 10(1):46–62. https://doi.org/10.1016/0045-2068(81)90042-0

    Article  CAS  Google Scholar 

  15. Liu B, Schofield CJ, Wilmouth RC (2006) Structural analyses on intermediates in serine protease catalysis. J Biol Chem 281(33):24024–24035. https://doi.org/10.1074/jbc.M600495200

    Article  CAS  PubMed  Google Scholar 

  16. Schaller A (1998) Action of proteolysis-resistant systemin analogues in wound signalling. Phytochemistry 47(4):605–612. https://doi.org/10.1016/S0031-9422(97)00523-2

    Article  CAS  PubMed  Google Scholar 

  17. Beloshistov RE, Dreizler K, Galiullina RA, Tuzhikov AI, Serebryakova MV, Reichardt S, Shaw J, Taliansky ME, Pfannstiel J, Chichkova NV, Stintzi A, Schaller A, Vartapetian AB (2018) Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New Phytol 218(3):1167–1178. https://doi.org/10.1111/nph.14568

    Article  CAS  PubMed  Google Scholar 

  18. Reichardt S, Repper D, Tuzhikov AI, Galiullina RA, Planas-Marques M, Chichkova NV, Vartapetian AB, Stintzi A, Schaller A (2018) The tomato subtilase family includes several cell death-related proteinases with caspase specificity. Sci Rep 8(1):10531. https://doi.org/10.1038/s41598-018-28769-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670. https://doi.org/10.1021/ac026117i

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB1101 project D06) to Andreas Schaller. We also thank Bianca Pflüger for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schaller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, X., Pfannstiel, J., Stintzi, A., Schaller, A. (2022). Peptide Backbone Modifications for the Assessment of Cleavage Site Relevance in Precursors of Signaling Peptides. In: Klemenčič, M., Stael, S., Huesgen, P.F. (eds) Plant Proteases and Plant Cell Death. Methods in Molecular Biology, vol 2447. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2079-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2079-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2078-6

  • Online ISBN: 978-1-0716-2079-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics