Skip to main content

Gene Co-expression Network Analysis

  • Protocol
  • First Online:
Plant Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2443))

Abstract

Gene co-expression analysis is a data analysis technique that helps identify groups of genes with similar expression patterns across several different conditions. By means of these techniques, different groups have been able to assign putative metabolic pathways and functions to understudied genes and to identify novel metabolic regulation networks for different metabolites. Some groups have even used network comparative studies to understand the evolution of these networks from green algae to land plants. In this chapter, we will go over the basic definitions required to understand network topology and gene module identification. Additionally, we offer the reader a walk-through a standard analysis pipeline as implemented in the package WGCNA that takes as input raw fastq files and obtains co-expressed gene clusters and representative gene expression patterns from each module for downstream applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weston DJ, Gunter LE, Rogers A, Wullschleger SD (2008) Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Syst Biol 2(1):16

    PubMed  PubMed Central  Google Scholar 

  2. Das S, Meher PK, Rai A, Bhar LM, Mandal BN (2017) Statistical approaches for gene selection, hub gene identification and module interaction in gene co-expression network analysis: an application to aluminum stress in soybean (Glycine max L.). PLoS One 12(1):e0169605

    PubMed  PubMed Central  Google Scholar 

  3. Emamjomeh A, Saboori Robat E, Zahiri J, Solouki M, Khosravi P (2017) Gene co-expression network reconstruction: a review on computational methods for inferring functional information from plant-based expression data. Plant Biotechnol Rep 11(2):71–86

    Google Scholar 

  4. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9(1):559

    PubMed  PubMed Central  Google Scholar 

  5. Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol 32:186–194

    CAS  PubMed  Google Scholar 

  6. Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65

    CAS  PubMed  Google Scholar 

  7. Lv L, Zhang W, Sun L, Zhao A, Zhang Y, Wang L et al (2020) Gene co-expression network analysis to identify critical modules and candidate genes of drought-resistance in wheat. PLoS One 15(8):e0236186

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tai Y, Liu C, Yu S, Yang H, Sun J, Guo C et al (2018) Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). BMC Genomics 19(1):616

    PubMed  PubMed Central  Google Scholar 

  9. Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A (2017) A global coexpression network approach for connecting genes to specialized metabolic pathways in plants. Plant Cell 29(5):944–959

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Guerin C, Joët T, Serret J, Lashermes P, Vaissayre V, Agbessi MDT et al (2016) Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. Plant J 87(5):423–441

    CAS  PubMed  Google Scholar 

  11. DCJ W, Matus JT (2017) Constructing integrated networks for identifying new secondary metabolic pathway regulators in grapevine: recent applications and future opportunities. Front Plant Sci 8:505

    Google Scholar 

  12. Ferreira SS, Hotta CT, Poelking VG, DCC L, Buckeridge MS, Loureiro ME et al (2016) Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. Plant Mol Biol 91(1–2):15–35

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruprecht C, Proost S, Hernandez-Coronado M, Ortiz-Ramirez C, Lang D, Rensing SA et al (2017) Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules. Plant J 90(3):447–465

    CAS  PubMed  Google Scholar 

  14. Ruprecht C, Vaid N, Proost S, Persson S, Mutwil M (2017) Beyond genomics: studying evolution with gene Coexpression networks. Trends Plant Sci 22(4):298–307

    CAS  PubMed  Google Scholar 

  15. Masalia RR, Bewick AJ, Burke JM (2017) Connectivity in gene coexpression networks negatively correlates with rates of molecular evolution in flowering plants. PLoS One 12(7):e0182289

    PubMed  PubMed Central  Google Scholar 

  16. Schaefer RJ, Michno J-M, Myers CL (2017) Unraveling gene function in agricultural species using gene co-expression networks. Biochim Biophys Acta Gene Regul Mech 1860(1):53–63

    CAS  PubMed  Google Scholar 

  17. Gupta C, Pereira A (2019) Recent advances in gene function prediction using context-specific coexpression networks in plants. F1000Res 8

    Google Scholar 

  18. Zhang H, Zhang J, Xu Q, Wang D, Di H, Huang J et al (2020) Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biol 20(1):333

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H, Wang ML, Schaefer R, Dang P, Jiang T, Chen C (2019) GWAS and coexpression network reveal Ionomic variation in cultivated peanut. J Agric Food Chem 67(43):12026–12036

    CAS  PubMed  Google Scholar 

  20. Schaefer RJ, Michno J-M, Jeffers J, Hoekenga O, Dilkes B, Baxter I et al (2018) Integrating coexpression networks with GWAS to prioritize causal genes in maize. Plant Cell 30(12):2922–2942

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Marshall-Colón A, Kliebenstein DJ (2019) Plant networks as traits and hypotheses: moving beyond description. Trends Plant Sci 24(9):840–852

    PubMed  Google Scholar 

  22. Shahan R, Zawora C, Wight H, Sittmann J, Wang W, Mount SM et al (2018) Consensus coexpression network analysis identifies key regulators of flower and fruit development in wild strawberry. Plant Physiol 178(1):202–216

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Togninalli M, Seren Ü, Freudenthal JA, Monroe JG, Meng D, Nordborg M et al (2020) AraPheno and the AraGWAS catalog 2020: a major database update including RNA-Seq and knockout mutation data for Arabidopsis thaliana. Nucleic Acids Res 48(D1):D1063–D1068

    CAS  PubMed  Google Scholar 

  24. Pearce S, Vazquez-Gross H, Herin SY, Hane D, Wang Y, Gu YQ et al (2015) WheatExp: an RNA-seq expression database for polyploid wheat. BMC Plant Biol 15(1):299

    PubMed  PubMed Central  Google Scholar 

  25. Xia L, Zou D, Sang J, Xu X, Yin H, Li M et al (2017) Rice expression database (RED): an integrated RNA-Seq-derived gene expression database for rice. J Genet Genomics 44(5):235–241

    PubMed  Google Scholar 

  26. Chao H, Li T, Luo C, Huang H, Ruan Y, Li X et al (2020) BrassicaEDB: a gene expression database for brassica crops. Int J Mol Sci 21(16):5831

    CAS  PubMed Central  Google Scholar 

  27. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    CAS  PubMed  Google Scholar 

  28. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    PubMed  PubMed Central  Google Scholar 

  30. Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL (2019) Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics 20(1):405

    PubMed  PubMed Central  Google Scholar 

  31. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Anders S, Pyl PT, Huber W (2015) HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    CAS  PubMed  Google Scholar 

  34. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930

    CAS  PubMed  Google Scholar 

  35. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M (2019) Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 20(1):278

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  Google Scholar 

  39. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    PubMed  PubMed Central  Google Scholar 

  40. Bodt SD, Carvajal D, Hollunder J, den Cruyce JV, Movahedi S, Inzé D (2010) CORNET: a user-friendly tool for data mining and integration. Plant Physiol 152(3):1167–1179

    PubMed  PubMed Central  Google Scholar 

  41. Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics 13:328

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Toubiana D, Puzis R, Sadka A, Blumwald E (2019) A genetic algorithm to optimize weighted gene co-expression network analysis. J Comput Biol 26(12):1349–1366

    CAS  PubMed  Google Scholar 

  43. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17

    PubMed  Google Scholar 

  44. Barabasi A-L, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60–69

    PubMed  Google Scholar 

  45. Chen Q, Shi D (2004) The modeling of scale-free networks. Phys A Stat Mech Appl 335(1):240–248

    Google Scholar 

  46. Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4(8):e1000117

    PubMed  PubMed Central  Google Scholar 

  47. Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1(1):54

    PubMed  PubMed Central  Google Scholar 

  48. Pardo-Diaz J, Bozhilova LV, Beguerisse-Díaz M, Poole PS, Deane CM, Reinert G (2021) Robust gene coexpression networks using signed distance correlation. Bioinformatics 37(14):1982–1989. https://doi.org/10.1093/bioinformatics/btab041

    Article  CAS  PubMed Central  Google Scholar 

  49. Gysi D, Voigt A, Fragoso T et al (2018) wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinformatics 19:392. https://doi.org/10.1186/s12859-018-2351-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Montenegro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Montenegro, J.D. (2022). Gene Co-expression Network Analysis. In: Edwards, D. (eds) Plant Bioinformatics. Methods in Molecular Biology, vol 2443. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2067-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2067-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2066-3

  • Online ISBN: 978-1-0716-2067-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics