Skip to main content

Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2442))

Abstract

Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBP:

Carbohydrate binding protein

CRD:

Carbohydrate recognition domain

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

GA:

Golgi apparatus

GalNAc:

N-acetylgalactosamine

GALNts:

GalNAc transferases

GBPs:

Glycan binding proteins

PNG:

Protein N glycosylation

Siglecs:

Sialic acid-binding immunoglobulin-type lectins

References

  1. Thiemann S, Baum LG (2016) Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol 34:243–264. https://doi.org/10.1146/annurev-immunol-041015-055402

    Article  CAS  PubMed  Google Scholar 

  2. Robinson BS, Arthur CM, Evavold B, Roback E, Kamili NA, Stowell CS, Vallecillo-Zuniga ML, Van Ry PM, Dias-Baruffi M, Cummings RD, Stowell SR (2019) The sweet-side of leukocytes: galectins as master regulators of neutrophil function. Front Immunol 10:1762. https://doi.org/10.3389/fimmu.2019.01762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131(9):jcs208884. https://doi.org/10.1242/jcs.208884

    Article  CAS  PubMed  Google Scholar 

  4. Girotti MR, Salatino M, Dalotto-Moreno T, Rabinovich GA (2020) Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J Exp Med 217(2):e20182041. https://doi.org/10.1084/jem.20182041

    Article  CAS  PubMed  Google Scholar 

  5. Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A beta-D-galactoside binding protein from electric organ tissue of electrophorus electricus. Proc Natl Acad Sci U S A 72(4):1383–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR (2015) Innate immunity against molecular mimicry: examining galectin-mediated antimicrobial activity. BioEssays 37(12):1327–1337. https://doi.org/10.1002/bies.201500055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lowe JB (2001) Glycosylation, immunity, and autoimmunity. Cell 104(6):809–812. https://doi.org/10.1016/s0092-8674(01)00277-x

    Article  CAS  PubMed  Google Scholar 

  8. Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76(4):597–598. https://doi.org/10.1016/0092-8674(94)90498-7

    Article  CAS  PubMed  Google Scholar 

  9. Arthur CM, Baruffi MD, Cummings RD, Stowell SR (2015) Evolving mechanistic insights into galectin functions. Methods Mol Biol 1207:1–35. https://doi.org/10.1007/978-1-4939-1396-1_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mendel G (1865) Experiments in plant hybridization 41

    Google Scholar 

  11. Lauc G, Kristic J, Zoldos V (2014) Glycans—the third revolution in evolution. Front Genet 5:145. https://doi.org/10.3389/fgene.2014.00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Houzelstein D, Goncalves IR, Fadden AJ, Sidhu SS, Cooper DN, Drickamer K, Leffler H, Poirier F (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21(7):1177–1187. https://doi.org/10.1093/molbev/msh082

    Article  CAS  PubMed  Google Scholar 

  13. Brewer CF (2002) Thermodynamic binding studies of galectin-1, -3 and -7. Glycoconj J 19(7–9):459–465. https://doi.org/10.1023/B:GLYC.0000014075.62724.d0

    Article  CAS  PubMed  Google Scholar 

  14. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O, Leffler H, Smith DF, Cummings RD (2008) Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J Biol Chem 283(15):10109–10123. https://doi.org/10.1074/jbc.M709545200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arthur CM, Rodrigues LC, Baruffi MD, Sullivan HC, Heimburg-Molinaro J, Smith DF, Cummings RD, Stowell SR (2015) Examining galectin binding specificity using glycan microarrays. Methods Mol Biol 1207:115–131. https://doi.org/10.1007/978-1-4939-1396-1_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572(2–3):232–254. https://doi.org/10.1016/s0304-4165(02)00311-2

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y, Cheng L, Gu Y, Xin A, Wu B, Zhou S, Guo S, Liu Y, Diao H, Shi H, Wang G, Tao SC (2016) A human lectin microarray for sperm surface glycosylation analysis. Mol Cell Proteomics 15(9):2839–2851. https://doi.org/10.1074/mcp.M116.059311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlsson S, Oberg CT, Carlsson MC, Sundin A, Nilsson UJ, Smith D, Cummings RD, Almkvist J, Karlsson A, Leffler H (2007) Affinity of galectin-8 and its carbohydrate recognition domains for ligands in solution and at the cell surface. Glycobiology 17(6):663–676. https://doi.org/10.1093/glycob/cwm026

    Article  CAS  PubMed  Google Scholar 

  19. Di Lella S, Marti MA, Croci DO, Guardia CM, Diaz-Ricci JC, Rabinovich GA, Caramelo JJ, Estrin DA (2010) Linking the structure and thermal stability of beta-galactoside-binding protein galectin-1 to ligand binding and dimerization equilibria. Biochemistry 49(35):7652–7658. https://doi.org/10.1021/bi100356g

    Article  CAS  PubMed  Google Scholar 

  20. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50(37):7842–7857. https://doi.org/10.1021/bi201121m

    Article  CAS  PubMed  Google Scholar 

  21. Stowell SR, Cho M, Feasley CL, Arthur CM, Song X, Colucci JK, Karmakar S, Mehta P, Dias-Baruffi M, McEver RP, Cummings RD (2009) Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J Biol Chem 284(8):4989–4999. https://doi.org/10.1074/jbc.M808925200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dias-Baruffi M, Zhu H, Cho M, Karmakar S, McEver RP, Cummings RD (2003) Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. J Biol Chem 278(42):41282–41293. https://doi.org/10.1074/jbc.M306624200

    Article  CAS  PubMed  Google Scholar 

  23. Stowell SR, Arthur CM, Slanina KA, Horton JR, Smith DF, Cummings RD (2008) Dimeric galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain. J Biol Chem 283(29):20547–20559. https://doi.org/10.1074/jbc.M802495200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arthur CM, Rodrigues LC, Baruffi MD, Sullivan HC, Cummings RD, Stowell SR (2015) Detection of phosphatidylserine exposure on leukocytes following treatment with human galectins. Methods Mol Biol 1207:185–200. https://doi.org/10.1007/978-1-4939-1396-1_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flores-Ibarra A, Vertesy S, Medrano FJ, Gabius HJ, Romero A (2018) Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci Rep 8(1):9835. https://doi.org/10.1038/s41598-018-28235-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazurek N, Conklin J, Byrd JC, Raz A, Bresalier RS (2000) Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. J Biol Chem 275(46):36311–36315. https://doi.org/10.1074/jbc.M003831200

    Article  CAS  PubMed  Google Scholar 

  27. Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HR, Raz A (2002) Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J Biol Chem 277(9):6852–6857. https://doi.org/10.1074/jbc.M107668200

    Article  CAS  PubMed  Google Scholar 

  28. Menon S, Kang CM, Beningo KA (2011) Galectin-3 secretion and tyrosine phosphorylation is dependent on the calpain small subunit, Calpain 4. Biochem Biophys Res Commun 410(1):91–96. https://doi.org/10.1016/j.bbrc.2011.05.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR (2016) Key regulators of galectin-glycan interactions. Proteomics 16(24):3111–3125. https://doi.org/10.1002/pmic.201600116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, Laszik Z, Benbrook DM, Hanigan MH, Cummings RD (2008) Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 68(6):1636–1646. https://doi.org/10.1158/0008-5472.CAN-07-2345

    Article  CAS  PubMed  Google Scholar 

  31. Stowell SR, Ju T, Cummings RD (2015) Protein glycosylation in cancer. Annu Rev Pathol 10:473–510. https://doi.org/10.1146/annurev-pathol-012414-040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arthur CM, Cummings RD, Stowell SR (2014) Using glycan microarrays to understand immunity. Curr Opin Chem Biol 18:55–61. https://doi.org/10.1016/j.cbpa.2013.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F (1998) Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev Dyn 211(4):306–313. https://doi.org/10.1002/(SICI)1097-0177(199804)211:4<306::AID-AJA2>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  34. Poirier F, Robertson EJ (1993) Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development 119(4):1229–1236

    Article  CAS  PubMed  Google Scholar 

  35. Poirier F, Timmons PM, Chan CT, Guenet JL, Rigby PW (1992) Expression of the L14 lectin during mouse embryogenesis suggests multiple roles during pre- and post-implantation development. Development 115(1):143–155

    Article  CAS  PubMed  Google Scholar 

  36. Colnot C, Ripoche MA, Scaerou F, Foulis D, Poirier F (1996) Galectins in mouse embryogenesis. Biochem Soc Trans 24(1):141–146. https://doi.org/10.1042/bst0240141

    Article  CAS  PubMed  Google Scholar 

  37. Wada J, Ota K, Kumar A, Wallner EI, Kanwar YS (1997) Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin. J Clin Invest 99(10):2452–2461. https://doi.org/10.1172/JCI119429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benvenuto G, Carpentieri ML, Salvatore P, Cindolo L, Bruni CB, Chiariotti L (1996) Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region. Mol Cell Biol 16(6):2736–2743. https://doi.org/10.1128/mcb.16.6.2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toscano MA, Campagna L, Molinero LL, Cerliani JP, Croci DO, Ilarregui JM, Fuertes MB, Nojek IM, Fededa JP, Zwirner NW, Costas MA, Rabinovich GA (2011) Nuclear factor (NF)-kappaB controls expression of the immunoregulatory glycan-binding protein galectin-1. Mol Immunol 48(15–16):1940–1949. https://doi.org/10.1016/j.molimm.2011.05.021

    Article  CAS  PubMed  Google Scholar 

  40. Than NG, Romero R, Erez O, Weckle A, Tarca AL, Hotra J, Abbas A, Han YM, Kim SS, Kusanovic JP, Gotsch F, Hou Z, Santolaya-Forgas J, Benirschke K, Papp Z, Grossman LI, Goodman M, Wildman DE (2008) Emergence of hormonal and redox regulation of galectin-1 in placental mammals: implication in maternal-fetal immune tolerance. Proc Natl Acad Sci U S A 105(41):15819–15824. https://doi.org/10.1073/pnas.0807606105

    Article  PubMed  PubMed Central  Google Scholar 

  41. Than NG, Romero R, Xu Y, Erez O, Xu Z, Bhatti G, Leavitt R, Chung TH, El-Azzamy H, LaJeunesse C, Wang B, Balogh A, Szalai G, Land S, Dong Z, Hassan SS, Chaiworapongsa T, Krispin M, Kim CJ, Tarca AL, Papp Z, Bohn H (2014) Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta 35(11):855–865. https://doi.org/10.1016/j.placenta.2014.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ely ZA, Moon JM, Sliwoski GR, Sangha AK, Shen XX, Labella AL, Meiler J, Capra JA, Rokas A (2019) The impact of natural selection on the evolution and function of placentally expressed galectins. Genome Biol Evol 11(9):2574–2592. https://doi.org/10.1093/gbe/evz183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Than NG, Romero R, Goodman M, Weckle A, Xing J, Dong Z, Xu Y, Tarquini F, Szilagyi A, Gal P, Hou Z, Tarca AL, Kim CJ, Kim JS, Haidarian S, Uddin M, Bohn H, Benirschke K, Santolaya-Forgas J, Grossman LI, Erez O, Hassan SS, Zavodszky P, Papp Z, Wildman DE (2009) A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci U S A 106(24):9731–9736. https://doi.org/10.1073/pnas.0903568106

    Article  PubMed  PubMed Central  Google Scholar 

  44. Than NG, Romero R, Kim CJ, McGowen MR, Papp Z, Wildman DE (2012) Galectins: guardians of eutherian pregnancy at the maternal-fetal interface. Trends Endocrinol Metab 23(1):23–31. https://doi.org/10.1016/j.tem.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  45. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ, Strominger JL (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198(8):1201–1212. https://doi.org/10.1084/jem.20030305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109(5):2058–2065. https://doi.org/10.1182/blood-2006-04-016451

    Article  CAS  PubMed  Google Scholar 

  47. Liu FT (2000) Galectins: a new family of regulators of inflammation. Clin Immunol 97(2):79–88. https://doi.org/10.1006/clim.2000.4912

    Article  CAS  PubMed  Google Scholar 

  48. Hsu DK, Hammes SR, Kuwabara I, Greene WC, Liu FT (1996) Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside-binding lectin, galectin-3. Am J Pathol 148(5):1661–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ackerman SJ, Corrette SE, Rosenberg HF, Bennett JC, Mastrianni DM, Nicholson-Weller A, Weller PF, Chin DT, Tenen DG (1993) Molecular cloning and characterization of human eosinophil Charcot-Leyden crystal protein (lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily. J Immunol 150(2):456–468

    CAS  PubMed  Google Scholar 

  50. Dor PJ, Ackerman SJ, Gleich GJ (1984) Charcot-Leyden crystal protein and eosinophil granule major basic protein in sputum of patients with respiratory diseases. Am Rev Respir Dis 130(6):1072–1077. https://doi.org/10.1164/arrd.1984.130.6.1072

    Article  CAS  PubMed  Google Scholar 

  51. Swaminathan GJ, Leonidas DD, Savage MP, Ackerman SJ, Acharya KR (1999) Selective recognition of mannose by the human eosinophil Charcot-Leyden crystal protein (galectin-10): a crystallographic study at 1.8 A resolution. Biochemistry 38(42):13837–13843. https://doi.org/10.1021/bi990756e

    Article  CAS  PubMed  Google Scholar 

  52. Yang RY, Yu L, Graham JL, Hsu DK, Lloyd KC, Havel PJ, Liu FT (2011) Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice. Proc Natl Acad Sci U S A 108(46):18696–18701. https://doi.org/10.1073/pnas.1109065108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dagher SF, Wang JL, Patterson RJ (1995) Identification of galectin-3 as a factor in pre-mRNA splicing. Proc Natl Acad Sci U S A 92(4):1213–1217. https://doi.org/10.1073/pnas.92.4.1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vyakarnam A, Lenneman AJ, Lakkides KM, Patterson RJ, Wang JL (1998) A comparative nuclear localization study of galectin-1 with other splicing components. Exp Cell Res 242(2):419–428. https://doi.org/10.1006/excr.1998.4111

    Article  CAS  PubMed  Google Scholar 

  55. Wang W, Park JW, Wang JL, Patterson RJ (2006) Immunoprecipitation of spliceosomal RNAs by antisera to galectin-1 and galectin-3. Nucleic Acids Res 34(18):5166–5174. https://doi.org/10.1093/nar/gkl673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakahara S, Hogan V, Inohara H, Raz A (2006) Importin-mediated nuclear translocation of galectin-3. J Biol Chem 281(51):39649–39659. https://doi.org/10.1074/jbc.M608069200

    Article  CAS  PubMed  Google Scholar 

  57. Huflejt ME, Turck CW, Lindstedt R, Barondes SH, Leffler H (1993) L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. J Biol Chem 268(35):26712–26718

    Article  CAS  PubMed  Google Scholar 

  58. Wang JL, Gray RM, Haudek KC, Patterson RJ (2004) Nucleocytoplasmic lectins. Biochim Biophys Acta 1673(1–2):75–93. https://doi.org/10.1016/j.bbagen.2004.03.013

    Article  CAS  PubMed  Google Scholar 

  59. Haudek KC, Voss PG, Locascio LE, Wang JL, Patterson RJ (2009) A mechanism for incorporation of galectin-3 into the spliceosome through its association with U1 snRNP. Biochemistry 48(32):7705–7712. https://doi.org/10.1021/bi900071b

    Article  CAS  PubMed  Google Scholar 

  60. Gray RM, Davis MJ, Ruby KM, Voss PG, Patterson RJ, Wang JL (2008) Distinct effects on splicing of two monoclonal antibodies directed against the amino-terminal domain of galectin-3. Arch Biochem Biophys 475(2):100–108. https://doi.org/10.1016/j.abb.2008.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park JW, Voss PG, Grabski S, Wang JL, Patterson RJ (2001) Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein. Nucleic Acids Res 29(17):3595–3602. https://doi.org/10.1093/nar/29.17.3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coppin L, Vincent A, Frenois F, Duchene B, Lahdaoui F, Stechly L, Renaud F, Villenet C, Van Seuningen I, Leteurtre E, Dion J, Grandjean C, Poirier F, Figeac M, Delacour D, Porchet N, Pigny P (2017) Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells. Sci Rep 7:43927. https://doi.org/10.1038/srep43927

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bafna S, Kaur S, Batra SK (2010) Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene 29(20):2893–2904. https://doi.org/10.1038/onc.2010.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, Burgess S, Haldi M, Artzt K, Farrington S, Lin SY, Nissen RM, Hopkins N (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31(2):135–140. https://doi.org/10.1038/ng896

    Article  CAS  PubMed  Google Scholar 

  65. Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93(13):6737–6742. https://doi.org/10.1073/pnas.93.13.6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A (1997) Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 57(23):5272–5276

    CAS  PubMed  Google Scholar 

  67. Wang Y, Balan V, Gao X, Reddy PG, Kho D, Tait L, Raz A (2013) The significance of galectin-3 as a new basal cell marker in prostate cancer. Cell Death Dis 4:e753. https://doi.org/10.1038/cddis.2013.277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng D, Liang B, Li Y (2015) Serum galectin-3 as a potential marker for gastric cancer. Med Sci Monit 21:755–760. https://doi.org/10.12659/MSM.892386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mazurek N, Byrd JC, Sun Y, Hafley M, Ramirez K, Burks J, Bresalier RS (2012) Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells. Cell Death Differ 19(3):523–533. https://doi.org/10.1038/cdd.2011.123

    Article  CAS  PubMed  Google Scholar 

  70. Kobayashi T, Shimura T, Yajima T, Kubo N, Araki K, Wada W, Tsutsumi S, Suzuki H, Kuwano H, Raz A (2011) Transient silencing of galectin-3 expression promotes both in vitro and in vivo drug-induced apoptosis of human pancreatic carcinoma cells. Clin Exp Metastasis 28(4):367–376. https://doi.org/10.1007/s10585-011-9376-x

    Article  CAS  PubMed  Google Scholar 

  71. Califice S, Castronovo V, Bracke M, van den Brule F (2004) Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3. Oncogene 23(45):7527–7536. https://doi.org/10.1038/sj.onc.1207997

    Article  CAS  PubMed  Google Scholar 

  72. Takenaka Y, Fukumori T, Yoshii T, Oka N, Inohara H, Kim HR, Bresalier RS, Raz A (2004) Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol 24(10):4395–4406. https://doi.org/10.1128/mcb.24.10.4395-4406.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bernerd F, Sarasin A, Magnaldo T (1999) Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes. Proc Natl Acad Sci U S A 96(20):11329–11334. https://doi.org/10.1073/pnas.96.20.11329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cooper DN, Barondes SH (1990) Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol 110(5):1681–1691. https://doi.org/10.1083/jcb.110.5.1681

    Article  CAS  PubMed  Google Scholar 

  75. Obino D, Fetler L, Soza A, Malbec O, Saez JJ, Labarca M, Oyanadel C, Del Valle BF, Goles N, Chikina A, Lankar D, Segovia-Miranda F, Garcia C, Leger T, Gonzalez A, Espeli M, Lennon-Dumenil AM, Yuseff MI (2018) Galectin-8 favors the presentation of surface-tethered antigens by stabilizing the B cell immune synapse. Cell Rep 25(11):3110–3122 e3116. https://doi.org/10.1016/j.celrep.2018.11.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cerri DG, Rodrigues LC, Stowell SR, Araujo DD, Coelho MC, Oliveira SR, Bizario JC, Cummings RD, Dias-Baruffi M, Costa MC (2008) Degeneration of dystrophic or injured skeletal muscles induces high expression of galectin-1. Glycobiology 18(11):842–850. https://doi.org/10.1093/glycob/cwn079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vallecillo-Zuniga ML, Rathgeber MF, Poulson PD, Hayes S, Luddington JS, Gill HN, Teynor M, Kartchner BC, Valdoz J, Stowell C, Markham AR, Arthur C, Stowell S, Van Ry PM (2020) Treatment with galectin-1 improves myogenic potential and membrane repair in dysferlin-deficient models. PLoS One 15(9):e0238441. https://doi.org/10.1371/journal.pone.0238441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seelenmeyer C, Wegehingel S, Tews I, Kunzler M, Aebi M, Nickel W (2005) Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. J Cell Biol 171(2):373–381. https://doi.org/10.1083/jcb.200506026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cho M, Cummings RD (1995) Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J Biol Chem 270(10):5207–5212. https://doi.org/10.1074/jbc.270.10.5207

    Article  CAS  PubMed  Google Scholar 

  80. Banfer S, Schneider D, Dewes J, Strauss MT, Freibert SA, Heimerl T, Maier UG, Elsasser HP, Jungmann R, Jacob R (2018) Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc Natl Acad Sci U S A 115(19):E4396–E4405. https://doi.org/10.1073/pnas.1718921115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482(7385):414–418. https://doi.org/10.1038/nature10744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Patnaik SK, Potvin B, Carlsson S, Sturm D, Leffler H, Stanley P (2006) Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16(4):305–317. https://doi.org/10.1093/glycob/cwj063

    Article  CAS  PubMed  Google Scholar 

  83. Nabi IR, Shankar J, Dennis JW (2015) The galectin lattice at a glance. J Cell Sci 128(13):2213–2219. https://doi.org/10.1242/jcs.151159

    Article  CAS  PubMed  Google Scholar 

  84. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8. https://doi.org/10.1016/s0304-4165(99)00165-8

    Article  CAS  PubMed  Google Scholar 

  85. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, Dennis JW (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134. https://doi.org/10.1016/j.cell.2007.01.049

    Article  CAS  PubMed  Google Scholar 

  86. Smith LK, Boukhaled GM, Condotta SA, Mazouz S, Guthmiller JJ, Vijay R, Butler NS, Bruneau J, Shoukry NH, Krawczyk CM, Richer MJ (2018) Interleukin-10 directly inhibits CD8(+) T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 48(2):299–312 e295. https://doi.org/10.1016/j.immuni.2018.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409(6821):733–739. https://doi.org/10.1038/35055582

    Article  CAS  PubMed  Google Scholar 

  88. Mkhikian H, Grigorian A, Li CF, Chen HL, Newton B, Zhou RW, Beeton C, Torossian S, Tatarian GG, Lee SU, Lau K, Walker E, Siminovitch KA, Chandy KG, Yu Z, Dennis JW, Demetriou M (2011) Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat Commun 2:334. https://doi.org/10.1038/ncomms1333

    Article  CAS  PubMed  Google Scholar 

  89. Li CF, Zhou RW, Mkhikian H, Newton BL, Yu Z, Demetriou M (2013) Hypomorphic MGAT5 polymorphisms promote multiple sclerosis cooperatively with MGAT1 and interleukin-2 and 7 receptor variants. J Neuroimmunol 256(1–2):71–76. https://doi.org/10.1016/j.jneuroim.2012.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yu Z, Li CF, Mkhikian H, Zhou RW, Newton BL, Demetriou M (2014) Family studies of type 1 diabetes reveal additive and epistatic effects between MGAT1 and three other polymorphisms. Genes Immun 15(4):218–223. https://doi.org/10.1038/gene.2014.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Levi G, Tarrab-Hazdai R, Teichberg VI (1983) Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur J Immunol 13(6):500–507. https://doi.org/10.1002/eji.1830130613

    Article  CAS  PubMed  Google Scholar 

  92. Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Seilhamer JJ (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181(3):877–887. https://doi.org/10.1084/jem.181.3.877

    Article  CAS  PubMed  Google Scholar 

  93. Lee-Sundlov MM, Stowell SR, Hoffmeister KM (2020) Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. J Thromb Haemost 18(7):1535–1547. https://doi.org/10.1111/jth.14874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gendronneau G, Sidhu SS, Delacour D, Dang T, Calonne C, Houzelstein D, Magnaldo T, Poirier F (2008) Galectin-7 in the control of epidermal homeostasis after injury. Mol Biol Cell 19(12):5541–5549. https://doi.org/10.1091/mbc.E08-02-0166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Panjwani N (2014) Role of galectins in re-epithelialization of wounds. Ann Transl Med 2(9):89. https://doi.org/10.3978/j.issn.2305-5839.2014.09.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Robinson BS, Saeedi B, Arthur CM, Owens J, Naudin C, Ahmed N, Luo L, Jones R, Neish A, Stowell SR (2020) Galectin-9 is a novel regulator of epithelial restitution. Am J Pathol 190(8):1657–1666. https://doi.org/10.1016/j.ajpath.2020.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J, Mayo KH, Poirier F, Griffioen AW (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci U S A 103(43):15975–15980. https://doi.org/10.1073/pnas.0603883103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. D’Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C, Baum L, Salmon I (2013) VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS One 8(6):e67029. https://doi.org/10.1371/journal.pone.0067029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156(3):899–909. https://doi.org/10.1016/S0002-9440(10)64959-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Freitag N, Tirado-Gonzalez I, Barrientos G, Herse F, Thijssen VL, Weedon-Fekjaer SM, Schulz H, Wallukat G, Klapp BF, Nevers T, Sharma S, Staff AC, Dechend R, Blois SM (2013) Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proc Natl Acad Sci U S A 110(28):11451–11456. https://doi.org/10.1073/pnas.1303707110

    Article  PubMed  PubMed Central  Google Scholar 

  101. Romaniuk MA, Tribulatti MV, Cattaneo V, Lapponi MJ, Molinas FC, Campetella O, Schattner M (2010) Human platelets express and are activated by galectin-8. Biochem J 432(3):535–547. https://doi.org/10.1042/BJ20100538

    Article  CAS  PubMed  Google Scholar 

  102. Pacienza N, Pozner RG, Bianco GA, D’Atri LP, Croci DO, Negrotto S, Malaver E, Gomez RM, Rabinovich GA, Schattner M (2008) The immunoregulatory glycan-binding protein galectin-1 triggers human platelet activation. FASEB J 22(4):1113–1123. https://doi.org/10.1096/fj.07-9524com

    Article  CAS  PubMed  Google Scholar 

  103. Romaniuk MA, Croci DO, Lapponi MJ, Tribulatti MV, Negrotto S, Poirier F, Campetella O, Rabinovich GA, Schattner M (2012) Binding of galectin-1 to alphaIIbbeta(3) integrin triggers “outside-in” signals, stimulates platelet activation, and controls primary hemostasis. FASEB J 26(7):2788–2798. https://doi.org/10.1096/fj.11-197541

    Article  CAS  PubMed  Google Scholar 

  104. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774. https://doi.org/10.1038/nrc3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20(51):7486–7493. https://doi.org/10.1038/sj.onc.1204950

    Article  CAS  PubMed  Google Scholar 

  106. Elad-Sfadia G, Haklai R, Balan E, Kloog Y (2004) Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem 279(33):34922–34930. https://doi.org/10.1074/jbc.M312697200

    Article  CAS  PubMed  Google Scholar 

  107. Shalom-Feuerstein R, Cooks T, Raz A, Kloog Y (2005) Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res 65(16):7292–7300. https://doi.org/10.1158/0008-5472.CAN-05-0775

    Article  CAS  PubMed  Google Scholar 

  108. Vuong L, Kouverianou E, Rooney CM, McHugh BJ, Howie SEM, Gregory CD, Forbes SJ, Henderson NC, Zetterberg FR, Nilsson UJ, Leffler H, Ford P, Pedersen A, Gravelle L, Tantawi S, Schambye H, Sethi T, MacKinnon AC (2019) An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and augments response to PD-L1 blockade. Cancer Res 79(7):1480–1492. https://doi.org/10.1158/0008-5472.CAN-18-2244

    Article  CAS  PubMed  Google Scholar 

  109. Chung LY, Tang SJ, Sun GH, Chou TY, Yeh TS, Yu SL, Sun KH (2012) Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin Cancer Res 18(15):4037–4047. https://doi.org/10.1158/1078-0432.CCR-11-3348

    Article  CAS  PubMed  Google Scholar 

  110. Banh A, Zhang J, Cao H, Bouley DM, Kwok S, Kong C, Giaccia AJ, Koong AC, Le QT (2011) Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Res 71(13):4423–4431. https://doi.org/10.1158/0008-5472.CAN-10-4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nambiar DK, Aguilera T, Cao H, Kwok S, Kong C, Bloomstein J, Wang Z, Rangan VS, Jiang D, von Eyben R, Liang R, Agarwal S, Colevas AD, Korman A, Allen CT, Uppaluri R, Koong AC, Giaccia A, Le QT (2019) Galectin-1-driven T cell exclusion in the tumor endothelium promotes immunotherapy resistance. J Clin Invest 129(12):5553–5567. https://doi.org/10.1172/JCI129025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. https://doi.org/10.1126/science.1129139

    Article  CAS  PubMed  Google Scholar 

  113. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. https://doi.org/10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guerin M, Biton J, Ouakrim H, Regnier F, Lupo A, Alifano M, Damotte D, Donnadieu E (2018) Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci U S A 115(17):E4041–E4050. https://doi.org/10.1073/pnas.1720948115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, Salgado R, Byrne DJ, Teo ZL, Dushyanthen S, Byrne A, Wein L, Luen SJ, Poliness C, Nightingale SS, Skandarajah AS, Gyorki DE, Thornton CM, Beavis PA, Fox SB, Kathleen Cuningham Foundation Consortium for Research into Familial Breast C, Darcy PK, Speed TP, Mackay LK, Neeson PJ, Loi S (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24(7):986–993. https://doi.org/10.1038/s41591-018-0078-7

    Article  CAS  PubMed  Google Scholar 

  116. Thijssen VL, Heusschen R, Caers J, Griffioen AW (2015) Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta 1855(2):235–247. https://doi.org/10.1016/j.bbcan.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  117. Gordon-Alonso M, Hirsch T, Wildmann C, van der Bruggen P (2017) Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration. Nat Commun 8(1):793. https://doi.org/10.1038/s41467-017-00925-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Santucci L, Fiorucci S, Cammilleri F, Servillo G, Federici B, Morelli A (2000) Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 31(2):399–406. https://doi.org/10.1002/hep.510310220

    Article  CAS  PubMed  Google Scholar 

  119. Santucci L, Fiorucci S, Rubinstein N, Mencarelli A, Palazzetti B, Federici B, Rabinovich GA, Morelli A (2003) Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124(5):1381–1394. https://doi.org/10.1016/s0016-5085(03)00267-1

    Article  CAS  PubMed  Google Scholar 

  120. Toscano MA, Commodaro AG, Ilarregui JM, Bianco GA, Liberman A, Serra HM, Hirabayashi J, Rizzo LV, Rabinovich GA (2006) Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J Immunol 176(10):6323–6332. https://doi.org/10.4049/jimmunol.176.10.6323

    Article  CAS  PubMed  Google Scholar 

  121. Baum LG, Blackall DP, Arias-Magallano S, Nanigian D, Uh SY, Browne JM, Hoffmann D, Emmanouilides CE, Territo MC, Baldwin GC (2003) Amelioration of graft versus host disease by galectin-1. Clin Immunol 109(3):295–307. https://doi.org/10.1016/j.clim.2003.08.003

    Article  CAS  PubMed  Google Scholar 

  122. Perillo NL, Pace KE, Seilhamer JJ, Baum LG (1995) Apoptosis of T cells mediated by galectin-1. Nature 378(6558):736–739. https://doi.org/10.1038/378736a0

    Article  CAS  PubMed  Google Scholar 

  123. Clemente T, Vieira NJ, Cerliani JP, Adrain C, Luthi A, Dominguez MR, Yon M, Barrence FC, Riul TB, Cummings RD, Zorn TM, Amigorena S, Dias-Baruffi M, Rodrigues MM, Martin SJ, Rabinovich GA, Amarante-Mendes GP (2017) Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. Cell Death Dis 8(12):e3176. https://doi.org/10.1038/cddis.2017.506

    Article  PubMed  PubMed Central  Google Scholar 

  124. Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, Baum LG (2006) Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol 176(2):778–789. https://doi.org/10.4049/jimmunol.176.2.778

    Article  CAS  PubMed  Google Scholar 

  125. Thiemann S, Man JH, Chang MH, Lee B, Baum LG (2015) Galectin-1 regulates tissue exit of specific dendritic cell populations. J Biol Chem 290(37):22662–22677. https://doi.org/10.1074/jbc.M115.644799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vermeulen ME, Geffner JR, Rabinovich GA (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10(9):981–991. https://doi.org/10.1038/ni.1772

    Article  CAS  PubMed  Google Scholar 

  127. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, Sharpe AH, Freeman GJ, Germain RN, Nakaya HI, Xue HH, Ahmed R (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537(7620):417–421. https://doi.org/10.1038/nature19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Robertson MW, Albrandt K, Keller D, Liu FT (1990) Human IgE-binding protein: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemistry 29(35):8093–8100. https://doi.org/10.1021/bi00487a015

    Article  CAS  PubMed  Google Scholar 

  129. Truong MJ, Gruart V, Kusnierz JP, Papin JP, Loiseau S, Capron A, Capron M (1993) Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/epsilon BP) of the S-type lectin family: role in IgE-dependent activation. J Exp Med 177(1):243–248

    Article  CAS  PubMed  Google Scholar 

  130. Stowell SR, Karmakar S, Stowell CJ, Dias-Baruffi M, McEver RP, Cummings RD (2007) Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109(1):219–227. https://doi.org/10.1182/blood-2006-03-007153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stowell SR, Qian Y, Karmakar S, Koyama NS, Dias-Baruffi M, Leffler H, McEver RP, Cummings RD (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180(5):3091–3102

    Article  CAS  PubMed  Google Scholar 

  132. Stowell SR, Karmakar S, Arthur CM, Ju T, Rodrigues LC, Riul TB, Dias-Baruffi M, Miner J, McEver RP, Cummings RD (2009) Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane. Mol Biol Cell 20(5):1408–1418. https://doi.org/10.1091/mbc.E08-07-0786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tian J, Yang G, Chen HY, Hsu DK, Tomilov A, Olson KA, Dehnad A, Fish SR, Cortopassi G, Zhao B, Liu FT, Gershwin ME, Torok NJ, Jiang JX (2016) Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J 30(12):4202–4213. https://doi.org/10.1096/fj.201600392RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen YJ, Wang SF, Weng IC, Hong MH, Lo TH, Jan JT, Hsu LC, Chen HY, Liu FT (2018) Galectin-3 enhances avian H5N1 influenza a virus-induced pulmonary inflammation by promoting NLRP3 inflammasome activation. Am J Pathol 188(4):1031–1042. https://doi.org/10.1016/j.ajpath.2017.12.014

    Article  CAS  PubMed  Google Scholar 

  135. Querol Cano L, Tagit O, Dolen Y, van Duffelen A, Dieltjes S, Buschow SI, Niki T, Hirashima M, Joosten B, van den Dries K, Cambi A, Figdor CG, van Spriel AB (2019) Intracellular galectin-9 controls dendritic cell function by maintaining plasma membrane rigidity. iScience 22:240–255. https://doi.org/10.1016/j.isci.2019.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu FT, Hughes J, Sethi T (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172(2):288–298. https://doi.org/10.2353/ajpath.2008.070726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Di Gregoli K, Somerville M, Bianco R, Thomas AC, Frankow A, Newby AC, George SJ, Jackson CL, Johnson JL (2020) Galectin-3 identifies a subset of macrophages with a potential beneficial role in atherosclerosis. Arterioscler Thromb Vasc Biol 40(6):1491–1509. https://doi.org/10.1161/ATVBAHA.120.314252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180(4):2650–2658. https://doi.org/10.4049/jimmunol.180.4.2650

    Article  CAS  PubMed  Google Scholar 

  139. Takahashi K, Ezekowitz RA (2005) The role of the mannose-binding lectin in innate immunity. Clin Infect Dis 41(Suppl 7):S440–S444. https://doi.org/10.1086/431987

    Article  CAS  PubMed  Google Scholar 

  140. Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO (2006) Mannose-binding lectin and its genetic variants. Genes Immun 7(2):85–94. https://doi.org/10.1038/sj.gene.6364283

    Article  CAS  PubMed  Google Scholar 

  141. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6(1):33–43. https://doi.org/10.1038/nri1745

    Article  CAS  PubMed  Google Scholar 

  142. Li FY, Weng IC, Lin CH, Kao MC, Wu MS, Chen HY, Liu FT (2019) Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 29(2):151–162. https://doi.org/10.1093/glycob/cwy095

    Article  CAS  PubMed  Google Scholar 

  143. Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun JA, Johansen T, Deretic V (2016) TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39(1):13–27. https://doi.org/10.1016/j.devcel.2016.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paz I, Sachse M, Dupont N, Mounier J, Cederfur C, Enninga J, Leffler H, Poirier F, Prevost MC, Lafont F, Sansonetti P (2010) Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 12(4):530–544. https://doi.org/10.1111/j.1462-5822.2009.01415.x

    Article  CAS  PubMed  Google Scholar 

  145. Vasta GR (2009) Roles of galectins in infection. Nat Rev Microbiol 7(6):424–438. https://doi.org/10.1038/nrmicro2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stowell SR, Arthur CM, Dias-Baruffi M, Rodrigues LC, Gourdine JP, Heimburg-Molinaro J, Ju T, Molinaro RJ, Rivera-Marrero C, Xia B, Smith DF, Cummings RD (2010) Innate immune lectins kill bacteria expressing blood group antigen. Nat Med 16(3):295–301. https://doi.org/10.1038/nm.2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476. https://doi.org/10.1038/nchembio.1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Springer GF, Williamson P, Brandes WC (1961) Blood group activity of gram-negative bacteria. J Exp Med 113(6):1077–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stowell CP, Stowell SR (2019) Biologic roles of the ABH and Lewis histo-blood group antigens part I: infection and immunity. Vox Sang 114(5):426–442. https://doi.org/10.1111/vox.12787

    Article  CAS  PubMed  Google Scholar 

  150. Stowell SR, Stowell CP (2019) Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism. Vox Sang 114(6):535–552. https://doi.org/10.1111/vox.12786

    Article  PubMed  Google Scholar 

  151. Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM (2012) Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 14(11):1657–1675. https://doi.org/10.1111/j.1462-5822.2012.01838.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Park AM, Hagiwara S, Hsu DK, Liu FT, Yoshie O (2016) Galectin-3 plays an important role in innate immunity to gastric infection by Helicobacter pylori. Infect Immun 84(4):1184–1193. https://doi.org/10.1128/IAI.01299-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ (2006) Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol 8(1):44–54. https://doi.org/10.1111/j.1462-5822.2005.00599.x

    Article  CAS  PubMed  Google Scholar 

  154. Yang ML, Chen YH, Wang SW, Huang YJ, Leu CH, Yeh NC, Chu CY, Lin CC, Shieh GS, Chen YL, Wang JR, Wang CH, Wu CL, Shiau AL (2011) Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J Virol 85(19):10010–10020. https://doi.org/10.1128/JVI.00301-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen Y, Zhou J, Cheng Z, Yang S, Chu H, Fan Y, Li C, Wong BH, Zheng S, Zhu Y, Yu F, Wang Y, Liu X, Gao H, Yu L, Tang L, Cui D, Hao K, Bosse Y, Obeidat M, Brandsma CA, Song YQ, To KK, Sham PC, Yuen KY, Li L (2015) Functional variants regulating LGALS1 (galectin 1) expression affect human susceptibility to influenza A(H7N9). Sci Rep 5:8517. https://doi.org/10.1038/srep08517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Levroney EL, Aguilar HC, Fulcher JA, Kohatsu L, Pace KE, Pang M, Gurney KB, Baum LG, Lee B (2005) Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J Immunol 175(1):413–420. https://doi.org/10.4049/jimmunol.175.1.413

    Article  CAS  PubMed  Google Scholar 

  157. Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R, Wright L, Robinson LR, Aspericueta V, Panico M, Haslam SM, Morris HR, Dell A, Lee B, Baum LG (2010) Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLoS Pathog 6(7):e1000993. https://doi.org/10.1371/journal.ppat.1000993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ouellet M, Mercier S, Pelletier I, Bounou S, Roy J, Hirabayashi J, Sato S, Tremblay MJ (2005) Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J Immunol 174(7):4120–4126. https://doi.org/10.4049/jimmunol.174.7.4120

    Article  CAS  PubMed  Google Scholar 

  159. Wang SF, Tsao CH, Lin YT, Hsu DK, Chiang ML, Lo CH, Chien FC, Chen P, Arthur Chen YM, Chen HY, Liu FT (2014) Galectin-3 promotes HIV-1 budding via association with Alix and Gag p6. Glycobiology 24(11):1022–1035. https://doi.org/10.1093/glycob/cwu064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Montespan C, Marvin SA, Austin S, Burrage AM, Roger B, Rayne F, Faure M, Campell EM, Schneider C, Reimer R, Grunewald K, Wiethoff CM, Wodrich H (2017) Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog 13(2):e1006217. https://doi.org/10.1371/journal.ppat.1006217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Stowell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Verkerke, H., Dias-Baruffi, M., Cummings, R.D., Arthur, C.M., Stowell, S.R. (2022). Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. In: Stowell, S.R., Arthur, C.M., Cummings, R.D. (eds) Galectins. Methods in Molecular Biology, vol 2442. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2055-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2055-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2054-0

  • Online ISBN: 978-1-0716-2055-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics