Skip to main content

Sensing Metal Ions with Phosphorothioate-Modified DNAzymes

  • Protocol
  • First Online:
DNAzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2439))

  • 870 Accesses

Abstract

Phosphorothioate (PS) modification refers to replacing one of the nonbridging oxygen atoms in nucleic acids with sulfur. PS modifications can be easily introduced during solid-phase DNA synthesis. It has been extensively used in ribozyme and DNAzyme research to achieve a bioinorganic understanding of metal binding, bioanalytical applications of metal detection, and chemical biology of DNA modification. It allows for the access of new chemistry, not available to natural DNA. Since each PS modification is accompanied by the production of a chiral phosphorus center, a key technical challenge is to separate the two diastereomers called Rp and Sp. In this chapter, we describe our methods of HPLC-based separation followed by ligation to generate a long and fluorescently modified DNAzyme substrate. Subsequently, the use of the modified substrate for activity assay to understand metal binding and for metal ion detection is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silverman SK (2016) Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci 41(7):595–609

    Article  CAS  Google Scholar 

  2. Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1(4):223–229

    Article  CAS  Google Scholar 

  3. Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94(9):4262–4266

    Article  CAS  Google Scholar 

  4. Li J, Lu Y (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J Am Chem Soc 122(42):10466–10467

    Article  CAS  Google Scholar 

  5. Hwang K, Hosseinzadeh P, Lu Y (2016) Biochemical and biophysical understanding of metal ion selectivity of DNAzymes. Inorg Chim Acta 452:12–24

    Article  CAS  Google Scholar 

  6. Zhou W, Saran R, Liu J (2017) Metal sensing by DNA. Chem Rev 117:8272–8325

    Article  CAS  Google Scholar 

  7. Lake RJ, Yang ZL, Zhang JL, Lu Y (2019) DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions. Acc Chem Res 52(12):3275–3286

    Article  CAS  Google Scholar 

  8. Huang P-JJ, Liu J (2021) In vitro selection and application of lanthanide-dependent DNAzymes. Methods Enzymol 650:373–396

    Article  Google Scholar 

  9. Liu M, Chang D, Li Y (2017) Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc Chem Res 50(9):2273–2283

    Article  CAS  Google Scholar 

  10. Moon WJ, Liu J (2020) Interfacing catalytic DNA with nanomaterials. Adv Mater Interfaces 7:2001017

    Article  CAS  Google Scholar 

  11. Peng H, Newbigging AM, Wang Z, Tao J, Deng W, Le XC, Zhang H (2018) DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal Chem 90(1):190–207

    Article  CAS  Google Scholar 

  12. Saran R, Huang Z, Liu J (2021) Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology. Coord Chem Rev 428:213624

    Article  CAS  Google Scholar 

  13. Frederiksen JK, Piccirilli JA (2009) Separation of RNA phosphorothioate oligonucleotides by HPLC. Methods Enzymol 468:289–309

    Article  CAS  Google Scholar 

  14. Forconi M, Herschlag D (2009) Use of phosphorothioates to identify sites of metal-ion binding in RNA. Methods Enzymol 468:311–333

    Article  CAS  Google Scholar 

  15. Thaplyal P, Ganguly A, Hammes-Schiffer S, Bevilacqua PC (2015) Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density. Biochemistry 54(12):2160–2175

    Article  CAS  Google Scholar 

  16. Misra VK, Draper DE (1998) On the role of magnesium ions in RNA stability. Biopolymers 48(2–3):113

    Article  CAS  Google Scholar 

  17. Zhou W, Liu J (2018) Multi-metal-dependent nucleic acid enzymes. Metallomics 10:30–48

    Article  CAS  Google Scholar 

  18. Zhou W, Saran R, Huang P-JJ, Ding J, Liu J (2017) An exceptionally selective DNA cooperatively binding two Ca2+ ions. Chembiochem 18(6):518–522

    Article  CAS  Google Scholar 

  19. Zhou W, Zhang Y, Huang P-JJ, Ding J, Liu J (2016) A DNAzyme requiring two different metal ions at two distinct sites. Nucleic Acids Res 44:354–363

    Article  CAS  Google Scholar 

  20. Huang P-JJ, Vazin M, Matuszek Ż, Liu J (2015) A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect. Nucleic Acids Res 43(1):461–469

    Article  Google Scholar 

  21. Huang P-JJ, Liu J (2020) In vitro selection of chemically modified DNAzymes. ChemistryOpen 9:1046–1059

    Article  CAS  Google Scholar 

  22. Huang P-JJ, Liu J (2016) An ultrasensitive light-up Cu2+ biosensor using a new DNAzyme cleaving a phosphorothioate-modified substrate. Anal Chem 88:3341–3347

    Article  CAS  Google Scholar 

  23. Huang P-JJ, Liu J (2015) Rational evolution of Cd2+-specific DNAzymes with phosphorothioate modified cleavage junction and Cd2+ sensing. Nucleic Acids Res 43(12):6125–6133

    Article  CAS  Google Scholar 

  24. Wang X, Feng M, Xiao L, Tong A, Xiang Y (2016) Postsynthetic modification of DNA phosphodiester backbone for photocaged DNAzyme. ACS Chem Biol 11(2):444–451

    Article  CAS  Google Scholar 

  25. Burgers PMJ, Eckstein F (1978) Absolute configuration of the diastereomers of adenosine 5'-O-(1-thiotriphosphate): consequences for the stereochemistry of polymerization by DNA-dependent RNA polymerase from Escherichia coli. Proc Natl Acad Sci U S A 75(10):4798–4800

    Article  CAS  Google Scholar 

  26. Slim G, Gait MJ (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res 19(6):1183–1188

    Article  CAS  Google Scholar 

  27. Stec WJ, Zon G (1984) Synthesis, separation, and stereochemistry of diastereomeric oligodeoxyribonucleotides having a 5′-terminal internucleotide phosphorothioate linkage. Tetrahedron Lett 25(46):5275–5278

    Article  CAS  Google Scholar 

  28. Stec WJ, Zon G, Egan W (1984) Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J Am Chem Soc 106(20):6077–6079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, PJ.J., Liu, J. (2022). Sensing Metal Ions with Phosphorothioate-Modified DNAzymes. In: Steger, G., Rosenbach, H., Span, I. (eds) DNAzymes. Methods in Molecular Biology, vol 2439. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2047-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2047-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2046-5

  • Online ISBN: 978-1-0716-2047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics