Skip to main content

Using Live Imaging to Examine Early Cardiac Development in Zebrafish

  • Protocol
  • First Online:
Cell Polarity Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2438))

Abstract

Visualizing dynamic cellular behaviors using live imaging is critical to the study of cell movement and to the study of cellular and embryonic polarity. Similarly, live imaging can be vital to elucidating the pathology of genetic disorders and diseases. Model systems such as zebrafish, whose in vivo development is accessible to both the microscope and genetic manipulation, are particularly well-suited to the use of live imaging. Here we describe an overall approach to conducting live-imaging experiments with a specific emphasis on investigating cell movements during the early stages of heart development in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aman A, Piotrowski T (2010) Cell migration during morphogenesis. Dev Biol 341(1):20–33. https://doi.org/10.1016/j.ydbio.2009.11.014

    Article  CAS  PubMed  Google Scholar 

  2. Yoo SK, Lam PY, Eichelberg MR, Zasadil L, Bement WM, Huttenlocher A (2012) The role of microtubules in neutrophil polarity and migration in live zebrafish. J Cell Sci 125(Pt 23):5702–5710. https://doi.org/10.1242/jcs.108324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rieger S, Wang F, Sagasti A (2011) Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension. Genesis 49(7):534–545. https://doi.org/10.1002/dvg.20729

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J (2020) Using zebrafish to analyze the genetic and environmental etiologies of congenital heart defects. Adv Exp Med Biol 1236:189–223. https://doi.org/10.1007/978-981-15-2389-2_8

    Article  CAS  PubMed  Google Scholar 

  5. Cooper MS, D'Amico LA, Henry CA (1999) Confocal microscopic analysis of morphogenetic movements. Methods Cell Biol 59:179–204. https://doi.org/10.1016/s0091-679x(08)61826-9

    Article  CAS  PubMed  Google Scholar 

  6. Giger FA, Dumortier JG, David NB (2016) Analyzing in vivo cell migration using cell transplantations and time-lapse imaging in zebrafish embryos. J Vis Exp 110:53792. https://doi.org/10.3791/53792

    Article  Google Scholar 

  7. Hirsinger E, Steventon B (2017) A versatile mounting method for long term imaging of zebrafish development. J Vis Exp 119:55210. https://doi.org/10.3791/55210

    Article  Google Scholar 

  8. Herrgen L, Schröter C, Bajard L, Oates AC (2009) Multiple embryo time-lapse imaging of zebrafish development. Methods Mol Biol 546:243–254. https://doi.org/10.1007/978-1-60327-977-2_15

    Article  PubMed  Google Scholar 

  9. McGurk PD, Lovely CB, Eberhart JK (2014) Analyzing craniofacial morphogenesis in zebrafish using 4D confocal microscopy. J Vis Exp 83:e51190. https://doi.org/10.3791/51190

    Article  CAS  Google Scholar 

  10. Glickman NS, Yelon D (2002) Cardiac development in zebrafish: coordination of form and function. Semin Cell Dev Biol 13(6):507–513. https://doi.org/10.1016/s1084952102001040

    Article  PubMed  Google Scholar 

  11. Evans SM, Yelon D, Conlon FL, Kirby ML (2010) Myocardial lineage development. Circ Res 107(12):1428–1444. https://doi.org/10.1161/circresaha.110.227405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Holtzman NG, Schoenebeck JJ, Tsai H-J, Yelon D (2007) Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development 134(12):2379–2386. https://doi.org/10.1242/dev.02857

    Article  CAS  PubMed  Google Scholar 

  13. Bloomekatz J, Singh R, Prall OW, Dunn AC, Vaughan M, Loo CS, Harvey RP, Yelon D (2017) Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly. Elife 6:e21172. https://doi.org/10.7554/eLife.21172

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kupperman E, An S, Osborne N, Waldron S, Stainier DY (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406(6792):192–195. https://doi.org/10.1038/35018092

    Article  CAS  PubMed  Google Scholar 

  15. Xie H, Ye D, Sepich D, Lin F (2016) S1pr2/Gα13 signaling regulates the migration of endocardial precursors by controlling endoderm convergence. Dev Biol 414(2):228–243. https://doi.org/10.1016/j.ydbio.2016.04.021

    Article  CAS  PubMed  Google Scholar 

  16. Ye D, Xie H, Hu B, Lin F (2015) Endoderm convergence controls subduction of the myocardial precursors during heart-tube formation. Development 142(17):2928–2940. https://doi.org/10.1242/dev.113944

    Article  CAS  PubMed  Google Scholar 

  17. Schumacher JA, Bloomekatz J, Garavito-Aguilar ZV, Yelon D (2013) tal1 regulates the formation of intercellular junctions and the maintenance of identity in the endocardium. Dev Biol 383(2):214–226. https://doi.org/10.1016/j.ydbio.2013.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drerup CM, Nechiporuk AV (2016) In vivo analysis of axonal transport in zebrafish. Methods Cell Biol 131:311–329. https://doi.org/10.1016/bs.mcb.2015.06.007

    Article  PubMed  Google Scholar 

  19. Westerfield M (2000) The Zebrafish Book : A Guide for the Laboratory Use of Zebrafish. http://zfinorg/zf_info/zfbook/zfbkhtml

    Google Scholar 

  20. Conchello J-A, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2(12):920–931. https://doi.org/10.1038/nmeth815

    Article  CAS  PubMed  Google Scholar 

  21. Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16(4):277–278. https://doi.org/10.1038/s41592-019-0352-8

    Article  CAS  PubMed  Google Scholar 

  22. Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ (2003) Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev Dyn 228(1):30–40. https://doi.org/10.1002/dvdy.10356

    Article  CAS  PubMed  Google Scholar 

  23. Choi J, Dong L, Ahn J, Dao D, Hammerschmidt M, Chen JN (2007) FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol 304(2):735–744. https://doi.org/10.1016/j.ydbio.2007.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan S, Sun Z (2009) Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos. J Vis Exp 27:1113. https://doi.org/10.3791/1113

    Article  Google Scholar 

  25. Parslow A, Cardona A, Bryson-Richardson RJ (2014) Sample drift correction following 4D confocal time-lapse imaging. J Vis Exp 86:51086. https://doi.org/10.3791/51086

    Article  CAS  Google Scholar 

  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  27. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200. https://doi.org/10.1016/b978-0-12-391857-4.00009-4

    Article  PubMed  Google Scholar 

  28. Meijering E (2006) MTrackJ: An ImageJ plugin for motion tracking and analysis. https://imagescienceorg/meijering/software/mtrackj/manual/. Accessed 24 August 2020

  29. Kaufmann A, Mickoleit M, Weber M, Huisken J (2012) Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development 139(17):3242–3247. https://doi.org/10.1242/dev.082586

    Article  CAS  PubMed  Google Scholar 

  30. Giurumescu CA, Kang S, Planchon TA, Betzig E, Bloomekatz J, Yelon D, Cosman P, Chisholm AD (2012) Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 139(22):4271–4279. https://doi.org/10.1242/dev.086256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aigouy B, Umetsu D, Eaton S (2016) Segmentation and quantitative analysis of epithelial tissues. Methods Mol Biol 1478:227–239. https://doi.org/10.1007/978-1-4939-6371-3_13

    Article  CAS  PubMed  Google Scholar 

  32. Leung CY, Fernandez-Gonzalez R (2015) Quantitative image analysis of cell behavior and molecular dynamics during tissue morphogenesis. Methods Mol Biol 1189:99–113. https://doi.org/10.1007/978-1-4939-1164-6_7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Bloomekatz and Willett laboratories as well as B. Jones for valuable feedback. J. Bloomekatz is supported by an American Heart Association Grant (18CDA34080195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Bloomekatz .

Editor information

Editors and Affiliations

1 Electronics Supplementary Materials

(MP4 5428 kb)

(MP4 2784 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McCann, T., Shrestha, R., Graham, A., Bloomekatz, J. (2022). Using Live Imaging to Examine Early Cardiac Development in Zebrafish. In: Chang, C., Wang, J. (eds) Cell Polarity Signaling. Methods in Molecular Biology, vol 2438. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2035-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2035-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2034-2

  • Online ISBN: 978-1-0716-2035-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics