Skip to main content

Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction–Associated Polarity Proteins

  • Protocol
  • First Online:
Cell Polarity Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2438))

Abstract

Here, we present a detailed protocol for fluorescence recovery after photobleaching (FRAP) to measure the dynamics of junctional populations of proteins in living tissue. Specifically, we describe how to perform FRAP in Drosophila pupal wings on fluorescently tagged core planar polarity proteins, which exhibit relatively slow junctional turnover. We provide a step-by-step practical guide to performing FRAP, and list a series of controls and optimizations to do before conducting a FRAP experiment. Finally, we describe how to present the FRAP data for publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lippincott-Schwartz J, Snapp EL, Phair RD (2018) The development and enhancement of FRAP as a key tool for investigating protein dynamics. Biophys J 115(7):1146–1155. https://doi.org/10.1016/j.bpj.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Day CA, Kraft LJ, Kang M, Kenworthy AK (2012) Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP). Curr Protoc Cytom. Chapter 2:Unit2 19. https://doi.org/10.1002/0471142956.cy0219s62

  3. Kang M, Day CA, DiBenedetto E, Kenworthy AK (2010) A quantitative approach to analyze binding diffusion kinetics by confocal FRAP. Biophys J 99(9):2737–2747. https://doi.org/10.1016/j.bpj.2010.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol:S7–S14. https://doi.org/10.1038/ncb1032

  5. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2(12):898–907. https://doi.org/10.1038/35103000

  6. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6):444–456. https://doi.org/10.1038/35073068

    Article  CAS  PubMed  Google Scholar 

  7. Reits EA, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3(6):E145–E147. https://doi.org/10.1038/35078615

    Article  CAS  PubMed  Google Scholar 

  8. Mueller F, Mazza D, Stasevich TJ, McNally JG (2010) FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin Cell Biol 22(3):403–411. https://doi.org/10.1016/j.ceb.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495. https://doi.org/10.1529/biophysj.103.026765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15(2):84–91. https://doi.org/10.1016/j.tcb.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  11. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069. https://doi.org/10.1016/S0006-3495(76)85755-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan KD, Majewska AK, Brown EB (2015) Single- and two-photon fluorescence recovery after photobleaching. Cold Spring Harb Protoc 2015(1):pdb top083519. https://doi.org/10.1101/pdb.top083519

    Article  PubMed  PubMed Central  Google Scholar 

  13. Strutt H, Warrington SJ, Strutt D (2011) Dynamics of core planar polarity protein turnover and stable assembly into discrete membrane subdomains. Dev Cell 20(4):511–525. https://doi.org/10.1016/j.devcel.2011.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ressurreicao M, Warrington S, Strutt D (2018) Rapid disruption of Dishevelled activity uncovers an intercellular role in maintenance of Prickle in core planar polarity protein complexes. Cell Rep 25(6):1415–1424. e1416. https://doi.org/10.1016/j.celrep.2018.10.039

  15. Warrington SJ, Strutt H, Fisher KH, Strutt D (2017) A dual function for Prickle in regulating Frizzled stability during feedback-dependent amplification of planar polarity. Curr Biol 27(18):2784–2797. e2783. https://doi.org/10.1016/j.cub.2017.08.016

  16. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5):2782–2790. https://doi.org/10.1016/S0006-3495(97)78307-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913–916. https://doi.org/10.1126/science.1068539

    Article  CAS  PubMed  Google Scholar 

  18. Sehring IM, Recho P, Denker E, Kourakis M, Mathiesen B, Hannezo E, Dong B, Jiang D (2015) Assembly and positioning of actomyosin rings by contractility and planar cell polarity. eLife 4:e09206. https://doi.org/10.7554/eLife.09206

    Article  PubMed  PubMed Central  Google Scholar 

  19. Skibinski GA, Boyd L (2012) Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates in C. elegans. BMC Cell Biol 13:10. https://doi.org/10.1186/1471-2121-13-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roda-Navarro P, Bastiaens PI (2014) Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. PLoS One 9(7):e103203. https://doi.org/10.1371/journal.pone.0103203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Picard D, Suslova E, Briand PA (2006) 2-color photobleaching experiments reveal distinct intracellular dynamics of two components of the Hsp90 complex. Exp Cell Res 312(19):3949–3958. https://doi.org/10.1016/j.yexcr.2006.08.026

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Zhong K, Yin Z, Hu J, Wang W, Li L, Zhang H, Zheng X, Wang P, Zhang Z (2019) The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Galpha subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae. PLoS Pathog 15(2):e1007382. https://doi.org/10.1371/journal.ppat.1007382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smyllie NJ, Pilorz V, Boyd J, Meng QJ, Saer B, Chesham JE, Maywood ES, Krogager TP, Spiller DG, Boot-Handford R, White MR, Hastings MH, Loudon AS (2016) Visualizing and quantifying intracellular behavior and abundance of the core circadian clock protein PERIOD2. Curr Biol 26(14):1880–1886. https://doi.org/10.1016/j.cub.2016.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Solecki DJ, Model L, Gaetz J, Kapoor TM, Hatten ME (2004) Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci 7(11):1195–1203. https://doi.org/10.1038/nn1332

    Article  PubMed  Google Scholar 

  25. Mueller F, Morisaki T, Mazza D, McNally JG (2012) Minimizing the impact of photoswitching of fluorescent proteins on FRAP analysis. Biophys J 102(7):1656–1665. https://doi.org/10.1016/j.bpj.2012.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sinnecker D, Voigt P, Hellwig N, Schaefer M (2005) Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44(18):7085–7094. https://doi.org/10.1021/bi047881x

    Article  CAS  PubMed  Google Scholar 

  27. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700. https://doi.org/10.1146/annurev.bi.55.070186.003311

    Article  CAS  PubMed  Google Scholar 

  28. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95(12):6803–6808. https://doi.org/10.1073/pnas.95.12.6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walther RF, Nunes de Almeida F, Vlassaks E, Burden JJ, Pichaud F (2016) Pak4 is required during epithelial polarity remodeling through regulating AJ stability and Bazooka retention at the ZA. Cell Rep 15(1):45–53. https://doi.org/10.1016/j.celrep.2016.03.014

  30. Bulgakova NA, Grigoriev I, Yap AS, Akhmanova A, Brown NH (2013) Dynamic microtubules produce an asymmetric E-cadherin-Bazooka complex to maintain segment boundaries. J Cell Biol 201(6):887–901. https://doi.org/10.1083/jcb.201211159

  31. Huang J, Huang L, Chen YJ, Austin E, Devor CE, Roegiers F, Hong Y (2011) Differential regulation of adherens junction dynamics during apical-basal polarization. J Cell Sci 124(Pt 23):4001–4013. https://doi.org/10.1242/jcs.086694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sullivan KD, Brown EB (2010) Measuring diffusion coefficients via two-photon fluorescence recovery after photobleaching. J Vis Exp 36(36):1636. https://doi.org/10.3791/1636

    Article  CAS  Google Scholar 

  33. Mazza D, Cella F, Vicidomini G, Krol S, Diaspro A (2007) Role of three-dimensional bleach distribution in confocal and two-photon fluorescence recovery after photobleaching experiments. Appl Opt 46(30):7401–7411. https://doi.org/10.1364/ao.46.007401

    Article  CAS  PubMed  Google Scholar 

  34. Butler MT, Wallingford JB (2017) Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 18(6):375–388. https://doi.org/10.1038/nrm.2017.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Devenport D (2014) The cell biology of planar cell polarity. J Cell Biol 207(2):171–179. https://doi.org/10.1083/jcb.201408039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goodrich LV, Strutt D (2011) Principles of planar polarity in animal development. Development 138(10):1877–1892. https://doi.org/10.1242/dev.054080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strutt H, Gamage J, Strutt D (2019) Reciprocal action of casein kinase Iepsilon on core planar polarity proteins regulates clustering and asymmetric localisation. eLife 8:e45107. https://doi.org/10.7554/eLife.45107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strutt H, Langton PF, Pearson N, McMillan KJ, Strutt D, Cullen PJ (2019) Retromer controls planar polarity protein levels and asymmetric localization at intercellular junctions. Curr Biol 29(3):484–491. e486. https://doi.org/10.1016/j.cub.2018.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strutt H, Gamage J, Strutt D (2016) Robust asymmetric localization of planar polarity proteins is associated with organization into signalosome-like domains of variable stoichiometry. Cell Rep 17(10):2660–2671. https://doi.org/10.1016/j.celrep.2016.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Warrington SJ, Strutt H, Strutt D (2013) The Frizzled-dependent planar polarity pathway locally promotes E-cadherin turnover via recruitment of RhoGEF2. Development 140(5):1045–1054. https://doi.org/10.1242/dev.088724

  41. Aigouy B, Farhadifar R, Staple DB, Sagner A, Roper JC, Julicher F, Eaton S (2010) Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142(5):773–786. https://doi.org/10.1016/j.cell.2010.07.042

  42. Bellaiche Y, Beaudoin-Massiani O, Stuttem I, Schweisguth F (2004) The planar cell polarity protein strabismus promotes pins anterior localization during asymmetric division of sensory organ precursor cells in Drosophila. Development 131(2):469–478. https://doi.org/10.1242/dev.00928

  43. Aw WY, Heck BW, Joyce B, Devenport D (2016) Transient tissue-scale deformation coordinates alignment of planar cell polarity junctions in the mammalian skin. Curr Biol 26(16):2090–2100. https://doi.org/10.1016/j.cub.2016.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi D, Usami F, Komatsu K, Oka S, Abe T, Uemura T, Fujimori T (2016) Dynamics of planar cell polarity protein Vangl2 in the mouse oviduct epithelium. Mech Dev 141:78–89. https://doi.org/10.1016/j.mod.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  45. Butler MT, Wallingford JB (2018) Spatial and temporal analysis of PCP protein dynamics during neural tube closure. eLife 7:e36456. https://doi.org/10.7554/eLife.36456

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chien YH, Srinivasan S, Keller R, Kintner C (2018) Mechanical strain determines cilia length, motility, and planar position in the left-right organizer. Dev Cell 45(3):316–330. e314. https://doi.org/10.1016/j.devcel.2018.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chien YH, Keller R, Kintner C, Shook DR (2015) Mechanical strain determines the axis of planar polarity in ciliated epithelia. Curr Biol 25(21):2774–2784. https://doi.org/10.1016/j.cub.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butler MT, Wallingford JB (2015) Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle2. Development 142(19):3429–3439. https://doi.org/10.1242/dev.121384

  49. Hale R, Brittle AL, Fisher KH, Monk NA, Strutt D (2015) Cellular interpretation of the long-range gradient of Four-jointed activity in the Drosophila wing. eLife 4:e05789. https://doi.org/10.7554/eLife.05789

  50. Loza O, Heemskerk I, Gordon-Bar N, Amir-Zilberstein L, Jung Y, Sprinzak D (2017) A synthetic planar cell polarity system reveals localized feedback on Fat4-Ds1 complexes. eLife 6:e24820. https://doi.org/10.7554/eLife.24820

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nunes de Almeida F, Walther RF, Presse MT, Vlassaks E, Pichaud F (2019) Cdc42 defines apical identity and regulates epithelial morphogenesis by promoting apical recruitment of Par6-aPKC and Crumbs. Development 146(15):dev175497. https://doi.org/10.1242/dev.175497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bajanca F, Gonzalez-Perez V, Gillespie SJ, Beley C, Garcia L, Theveneau E, Sear RP, Hughes SM (2015) In vivo dynamics of skeletal muscle dystrophin in zebrafish embryos revealed by improved FRAP analysis. eLife 4:e06541. https://doi.org/10.7554/eLife.06541

    Article  PubMed Central  Google Scholar 

  53. Firmino J, Tinevez JY, Knust E (2013) Crumbs affects protein dynamics in anterior regions of the developing Drosophila embryo. PLoS One 8(3):e58839. https://doi.org/10.1371/journal.pone.0058839

  54. Trembecka DO, Kuzak M, Dobrucki JW (2010) Conditions for using FRAP as a quantitative technique--influence of the bleaching protocol. Cytometry A 77(4):366–370. https://doi.org/10.1002/cyto.a.20866

    Article  CAS  PubMed  Google Scholar 

  55. Goehring NW, Chowdhury D, Hyman AA, Grill SW (2010) FRAP analysis of membrane-associated proteins: lateral diffusion and membrane-cytoplasmic exchange. Biophys J 99(8):2443–2452. https://doi.org/10.1016/j.bpj.2010.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kang M, Andreani M, Kenworthy AK (2015) Validation of normalizations, scaling, and Photofading corrections for FRAP data analysis. PLoS One 10(5):e0127966. https://doi.org/10.1371/journal.pone.0127966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Classen AK, Aigouy B, Giangrande A, Eaton S (2008) Imaging Drosophila pupal wing morphogenesis. Methods Mol Biol 420:265–275. https://doi.org/10.1007/978-1-59745-583-1_16

    Article  CAS  PubMed  Google Scholar 

  58. Lepock JR, Thompson JE, Kruuv J (1978) Photoinduced crosslinking of membrane proteins by fluorescein isothiocyanate. Biochem Biophys Res Commun 85(1):344–350. https://doi.org/10.1016/s0006-291x(78)80048-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Strutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Warrington, S.J., Strutt, H., Strutt, D. (2022). Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction–Associated Polarity Proteins. In: Chang, C., Wang, J. (eds) Cell Polarity Signaling. Methods in Molecular Biology, vol 2438. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2035-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2035-9_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2034-2

  • Online ISBN: 978-1-0716-2035-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics