Skip to main content

Transcriptomic-Assisted Immune and Neoantigen Profiling in Premalignancy

  • Protocol
  • First Online:
Cancer Immunoprevention

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2435))

Abstract

Immune-based cancer therapies such as checkpoint inhibitors (CPI) and vaccines have been increasingly studied across different cancer types. Response to such therapies depends on a number of factors such as mutational burden, neoantigen load, presence of tumor infiltrating lymphocytes, among others. Next-generation sequencing (NGS) technologies are particularly attractive to interrogate the immune response compared to traditional assays such as qRT-PCR and immunohistochemistry (IHC) because they enable the discovery of neoantigens and simultaneous profiling of immune infiltration using gene expression on a large scale. Current approaches in immune profiling utilizes whole-exome sequencing (WES) for human leukocyte allele (HLA) typing and neoantigen predictions, and RNA sequencing (RNA-seq) for filtering unexpressed neoantigens and inferring immune infiltration. They have been successfully applied to the tumor setting as there is abundant sample material to perform both experiments. However, premalignant specimens are often much smaller compared to tumors. Therefore, there is a need to explore the viability of adopting a single approach for immune, neoantigen, and mutation profiling. Here, we describe our workflow of using RNA-seq to analyze mutational burden, neoantigen load, and immune expression profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CPI:

Checkpoint inhibitors

CRC:

Colorectal cancer

FAP:

Familial Adenomatous Polyposis

FSP:

Frameshift peptides

GEO:

Gene Expression Omnibus

HLA:

Human leukocyte typing

IHC:

Immunohistochemistry

LS:

Lynch syndrome

MHC:

Major histocompatibility complex

MMR:

Mismatch repair

MS:

Microsatellite

MSigDB:

Molecular Signatures Database

NGS:

Next-generation sequencing

RNA-seq:

RNA sequencing

TCGA:

The Cancer Genome Atlas

TCR:

T-cell receptor

TPM:

Transcripts per million

WES:

Whole-exome sequencing

References

  1. Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17(4):209–222

    Article  CAS  Google Scholar 

  2. Network TCGA (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337

    Article  Google Scholar 

  3. Chang K, Taggart MW, Reyes-Uribe L et al (2018) Immune profiling of premalignant lesions in patients with lynch syndrome. JAMA Oncol 4(8):1085–1092

    Article  Google Scholar 

  4. The Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337

    Article  Google Scholar 

  5. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  Google Scholar 

  6. Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.10.33

    Article  Google Scholar 

  7. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  Google Scholar 

  8. Broad Institute (2018) Picard Tools. {Broad Institute, GitHub repository}

    Google Scholar 

  9. Hundal J, Carreno BM, Petti AA et al (2016) pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med 8(1):11

    Article  Google Scholar 

  10. McLaren W, Gil L, Hunt SE et al (2016) The Ensembl variant effect predictor. Genome Biol 17(1):122

    Article  Google Scholar 

  11. R: a language and environment for statistical computing [computer program]. R Foundation for Statistical Computing; 2013

    Google Scholar 

  12. Wickham H. tidyverse: Easily Install and Load the 'Tidyverse. 2017

    Google Scholar 

  13. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2

    Google Scholar 

  14. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  Google Scholar 

  15. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C (2016) DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol 17:31

    Article  Google Scholar 

  16. Lucas A (2014) amap: another multidimensional analysis package

    Google Scholar 

  17. Llosa NJ, Cruise M, Tam A et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5(1):43–51

    Article  CAS  Google Scholar 

  18. Yoshihara K, Shahmoradgoli M, Martinez E et al (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612

    Article  Google Scholar 

  19. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425

    Article  CAS  Google Scholar 

  20. Genomes Project C, Auton A, Brooks LD et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    Article  Google Scholar 

  21. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291

    Article  CAS  Google Scholar 

  22. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  23. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  Google Scholar 

  24. Le DT, Durham JN, Smith KN et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349):409–413

    Article  CAS  Google Scholar 

  25. Boegel S, Lower M, Schafer M et al (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(12):102

    Article  Google Scholar 

  26. Rosati E, Dowds CM, Liaskou E, Henriksen EKK, Karlsen TH, Franke A (2017) Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnol 17(1):61

    Article  Google Scholar 

  27. Bolotin DA, Poslavsky S, Mitrophanov I et al (2015) MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods 12(5):380–381

    Article  CAS  Google Scholar 

  28. Brown SD, Raeburn LA, Holt RA (2015) Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med 7:125

    Article  CAS  Google Scholar 

  29. Maruvka YE, Mouw KW, Karlic R et al (2017) Analysis of somatic microsatellite indels identifies driver events in human tumors. Nat Biotechnol 35(10):951–959

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants R21 CA208461 and R01 CA219463 (US National Institutes of Health/National Cancer Institute), The University of Texas MD Anderson Cancer Center Colorectal Cancer Moonshot Program, and a gift from the Feinberg Family to E.V.; Cancer Prevention Educational Award R25T CA057730 (U.S. National Institutes of Health/National Cancer Institute) to K.C.; and P30 CA016672 (US National Institutes of Health/National Cancer Institute) to the University of Texas Anderson Cancer Center Core Support Grant.

Conflict of Interest: Dr. Vilar has a consulting or advisory role with Janssen Research and Development and Recursion Pharma. He has received research support from Janssen Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Vilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, K., McAllister, F., Vilar, E. (2022). Transcriptomic-Assisted Immune and Neoantigen Profiling in Premalignancy. In: McAllister, F. (eds) Cancer Immunoprevention. Methods in Molecular Biology, vol 2435. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2014-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2014-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2013-7

  • Online ISBN: 978-1-0716-2014-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics