Skip to main content

Designing Genetically Engineered Mouse Models (GEMMs) Using CRISPR Mediated Genome Editing

  • Protocol
  • First Online:
Stem Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2429))

Abstract

Genetically engineered mouse models (GEMMs) are very powerful tools to study lineage hierarchy and cellular dynamics of stem cells in vivo. Stem cell behavior in various contexts such as development, normal homeostasis and diseases have been investigated using GEMMs. The strategies to generate GEMMs have drastically changed in the last decade with the development of the CRISPR/Cas9 system for manipulation of the mammalian genome. The advantages of the CRISPR/Cas9 are its simplicity and efficiency. The bioinformatics tools available now allow us to quickly identify appropriate guide RNAs and design experimental conditions to generate the targeted mutation. In addition, the genome can be manipulated directly in the zygote which reduces the time to modify target genes compared to other technologies such as Embryonic Stem (ES) cells. Equally important is that we can manipulate the genome of any mouse background with the CRISPR/Cas9 system which omits time-consuming backcrossing processes, accelerates research and increases flexibility. Here, we will summarize basic allelic types and our standard strategies of how to generate them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hilton IB, Gersbach CA (2015) Enabling functional genomics with genome engineering. Genome Res 25:1442–1455. https://doi.org/10.1101/gr.190124.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zuo E, Cai Y-J, Li K, Wei Y, Wang B-A, Sun Y, Liu Z, Liu J, Hu X, Wei W, Huo X, Shi L, Tang C, Liang D, Wang Y, Nie Y-H, Zhang C-C, Yao X, Wang X, Zhou C, Ying W, Wang Q, Chen R-C, Shen Q, Xu G-L, Li J, Sun Q, Xiong Z-Q, Yang H (2017) One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 27:933–945. https://doi.org/10.1038/cr.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Casola S (2010) Mouse models for miRNA expression: the ROSA26 locus. In: Monticelli S (ed) MicroRNAs and the immune system. Humana Press, Totowa, NJ, pp 145–163

    Chapter  Google Scholar 

  6. Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36:632–637. https://doi.org/10.1038/nbt.4166

    Article  CAS  PubMed  Google Scholar 

  7. Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M (2018) Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc 13:195–215. https://doi.org/10.1038/nprot.2017.153

    Article  CAS  PubMed  Google Scholar 

  8. Yao X, Zhang M, Wang X, Ying W, Hu X, Dai P, Meng F, Shi L, Sun Y, Yao N, Zhong W, Li Y, Wu K, Li W, Chen Z, Yang H (2018) Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev Cell 45:526–536.e5. https://doi.org/10.1016/j.devcel.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  9. Behringer R, Gertsenstein M, Nagy KV, Nagy A (2014) Manipulating the mouse embryo: a laboratory manual, 4th edn. Cold Spring Harbor, New York

    Google Scholar 

  10. Yamanaka Y (2016) CRISPR/Cas9 genome editing as a strategy to study the tumor microenvironment in transgenic mice. In: Ursini-Siegel J, Beauchemin N (eds) The tumor microenvironment. Springer, New York, pp 261–271

    Chapter  Google Scholar 

  11. Posfai E, Petropoulos S, de Barros FRO, Schell JP, Jurisica I, Sandberg R, Lanner F, Rossant J (2017) Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. elife 6:e22906. https://doi.org/10.7554/eLife.22906

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, Nakamura S, Wada K, Gurumurthy CB (2018) i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol 19:25. https://doi.org/10.1186/s13059-018-1400-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whitten WK (1956) Modification of the oestrous cycle of the mouse by external stimuli associated with the male. J Endocrinol 13:399–404. https://doi.org/10.1677/joe.0.0130399

    Article  CAS  PubMed  Google Scholar 

  14. Pollock JD (1996) Mouse genetics: concepts and applications. In: Silver LM (ed) The quarterly review of biology, vol 71, pp 123–123. https://doi.org/10.1086/419294

    Chapter  Google Scholar 

  15. Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD (2017) Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol 241:136–146. https://doi.org/10.1016/j.jbiotec.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  16. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly J-S, Concordet J-P (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. https://doi.org/10.1186/s13059-016-1012-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitra Cowan or Yojiro Yamanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Desjardins, J., Cowan, M., Yamanaka, Y. (2022). Designing Genetically Engineered Mouse Models (GEMMs) Using CRISPR Mediated Genome Editing. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_36

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics