Skip to main content

High-Resolution Ribosome Profiling for Determining Ribosome Functional States During Translation Elongation

  • Protocol
  • First Online:
The Integrated Stress Response

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2428))

Abstract

Translation elongation is a highly choreographed process that involves substantial conformational changes of the ribosome to accommodate aminoacyl-tRNAs and traverse along the mRNA template. To capture distinct functional states of the ribosome, a high-resolution ribosome profiling-based approach has been developed. By deep-sequencing differently sized ribosome-protected mRNA fragments, this approach captures not only ribosome positions but also their functional states in vivo across the Saccharomyces cerevisiae transcriptome with codon resolution. This chapter presents a condensed and step-by-step protocol for preserving ribosomes in their functional states using a cocktail of antibiotics that traps distinct steps of elongating ribosomes and for constructing a cDNA library derived from the ribosome-protected mRNA fragments for deep sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dever TE, Dinman JD, Green R (2018) Translation elongation and recoding in eukaryotes. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a032649

  2. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802. https://doi.org/10.1016/j.cell.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolin SL, Walter P (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 7:3559–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lareau LF, Hite DH, Hogan GJ, Brown PO (2014) Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. elife 3:e01257. https://doi.org/10.7554/eLife.01257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu CC-C, Zinshteyn B, Wehner KA, Green R (2019) High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol Cell 73:959–970.e5. https://doi.org/10.1016/j.molcel.2018.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Budkevich T, Giesebrecht J, Altman RB et al (2011) Structure and dynamics of the mammalian ribosomal pretranslocation complex. Mol Cell 44:214–224. https://doi.org/10.1016/j.molcel.2011.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jenner L, Starosta AL, Terry DS et al (2013) Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proc Natl Acad Sci U S A 110:3812–3816. https://doi.org/10.1073/pnas.1216691110

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang H, Lei R, Ding SW, Zhu S (2014) Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15:182. https://doi.org/10.1186/1471-2105-15-182

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  11. Schuller AP, Wu CC, Dever TE et al (2017) eIF5A functions globally in translation elongation and termination. Mol Cell 66:194–205.e5. https://doi.org/10.1016/j.molcel.2017.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. dos Reis M, Savva R, Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32:5036–5044. https://doi.org/10.1093/nar/gkh834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McGlincy NJ, Ingolia NT (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112–129. https://doi.org/10.1016/j.ymeth.2017.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pfeffer S, Lagos-Quintana M, Tuschl T (2005) Cloning of small RNA molecules. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb2604s72

  15. Zinshteyn B, Wangen JR, Boyang HUA, Green R (2020) Nuclease-mediated depletion biases in ribosome footprint profiling libraries. RNA. https://doi.org/10.1261/rna.075523.120

  16. Guydosh NR, Green R (2014) Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156:950–962. https://doi.org/10.1016/j.cell.2014.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu W, Crawford ED, O’Donovan BD et al (2016) Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. https://doi.org/10.1186/s13059-016-0904-5

  18. Han P, Shichino Y, Schneider-Poetsch T et al (2020) Genome-wide survey of ribosome collision. Cell Rep 31:107610. https://doi.org/10.1016/j.celrep.2020.107610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This protocol was initiated in the Green lab (Johns Hopkins University School of Medicine). The authors would like to thank Rachel Green for her support, and Nicholas R. Guydosh, Boris Zinshteyn, and Danny Nedialkova for helpful tips on developing this protocol. B.S.M. and M.S. are supported by Cancer Research Training Award. The work was support by the Intramural Research Program of the National Cancer Institute, National Institute of Health (C.C.-C.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Chih-Chien Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shafieinouri, M., Membreno, B.S., Wu, C.CC. (2022). High-Resolution Ribosome Profiling for Determining Ribosome Functional States During Translation Elongation. In: Matějů, D., Chao, J.A. (eds) The Integrated Stress Response. Methods in Molecular Biology, vol 2428. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1975-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1975-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1974-2

  • Online ISBN: 978-1-0716-1975-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics