Skip to main content

Generation of HLA Allele-Specific Spectral Libraries to Identify and Quantify Immunopeptidomes by SWATH/DIA-MS

  • Protocol
  • First Online:
Clinical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2420))

Abstract

Developing a deep and comprehensive understanding of the collection of peptides presented by class I human leukocyte antigens (HLA ), collectively referred to as the immunopeptidome , is conducive to the success of a wide range of immunotherapies. The development of tools that enable the deconvolution of immunopeptidomes in the context of disease can help improve the specificity and effectiveness of therapeutic strategies targeting these peptides, such as adoptive T-cell therapy and vaccines. Here, we describe a computational workflow that facilitates the processing and interpretation of data-independent acquisition mass spectrometry (DIA-MS). We consider a specific variation of DIA-MS known as SWATH-MS. SWATH-MS is a promising technique that can be utilized to reproducibly characterize and quantify immunopeptidomes isolated from a wide range of biological sources. In this workflow, we use an assortment of database search engines and computational tools to build high-quality HLA allele-specific peptide spectral peptide libraries for the analysis of immunopeptidomic datasets acquired by SWATH-MS. Generating and sharing these spectral libraries are essential for the SWATH-MS technology to meet its full potential and to enable the rapid and reproducible quantification of HLA-specific peptides across multiple samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koff WC, Burton DR, Johnson PR et al (2013) Accelerating next-generation vaccine development for global. Clin Infect Dis 340. https://doi.org/10.1126/science.1232910

  2. Yi L, WEIFAN Y, HUAN Y (2019) Chimeric antigen receptor–engineered regulatory T lymphocytes: promise for immunotherapy of autoimmune disease. Cytotherapy 21:925–934. https://doi.org/10.1016/j.jcyt.2019.04.060

    Article  CAS  PubMed  Google Scholar 

  3. Bräunlein E, Krackhardt AM (2017) Identification and characterization of Neoantigens as well as respective immune responses in cancer patients. Front Immunol 8:1702. https://doi.org/10.3389/fimmu.2017.01702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caron E, Vincent K, Fortier M et al (2011) The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Mol Syst Biol 7:533. https://doi.org/10.1038/msb.2011.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kowalewski DJ, Schuster H, Backert L et al (2015) HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A 112:E166–E175. https://doi.org/10.1073/pnas.1416389112

    Article  CAS  PubMed  Google Scholar 

  6. Falk K, Rötzschke O, Stevanovié S et al (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296. https://doi.org/10.1038/351290a0

    Article  CAS  PubMed  Google Scholar 

  7. Hunt DF, Henderson RA, Shabanowitz J et al (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255(5049):1261–1263. https://doi.org/10.1126/science.1546328

    Article  CAS  PubMed  Google Scholar 

  8. Admon A, Bassani-Sternberg M (2011) The human Immunopeptidome project, a suggestion for yet another Postgenome next big thing. Mol Cell Proteomics 10:O111.011833. https://doi.org/10.1074/mcp.o111.011833

    Article  PubMed  PubMed Central  Google Scholar 

  9. Granados DP, Laumont CM, Thibault P, Perreault C (2015) The nature of self for T cells—a systems-level perspective. Curr Opin Immunol 34:1–8. https://doi.org/10.1016/j.coi.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  10. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC−MS/MS. J Proteome Res 10:1785–1793. https://doi.org/10.1021/pr101060v

    Article  CAS  PubMed  Google Scholar 

  11. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis*. Mol Cell Proteomics 11:O111.016717. https://doi.org/10.1074/mcp.o111.016717

    Article  PubMed  PubMed Central  Google Scholar 

  12. Caron E, Espona L, Kowalewski DJ et al (2015) An open-source computational and data resource to analyze digital maps of immunopeptidomes. Elife 4:e07661. https://doi.org/10.7554/elife.07661

    Article  PubMed Central  Google Scholar 

  13. Deutsch EW, Mendoza L, Shteynberg D et al (2015) Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9:745–754. https://doi.org/10.1002/prca.201400164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reynisson B, Alvarez B, Paul S et al (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 48:gkaa379. https://doi.org/10.1093/nar/gkaa379

    Article  CAS  Google Scholar 

  15. Röst HL, Rosenberger G, Navarro P et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223. https://doi.org/10.1038/nbt.2841

    Article  CAS  PubMed  Google Scholar 

  16. Röst HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959

    Article  CAS  PubMed  Google Scholar 

  17. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392. https://doi.org/10.1021/ac025747h

    Article  CAS  PubMed  Google Scholar 

  19. Shteynberg D, Deutsch EW, Lam H et al (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10:M111.007690. https://doi.org/10.1074/mcp.m111.007690

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lam H, Deutsch EW, Eddes JS et al (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7:655–667. https://doi.org/10.1002/pmic.200600625

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Caron Lab for helpful discussions. This work was supported by funding from the Fonds de recherche du Québec—Santé (FRQS), the Cole Foundation, CHU Sainte-Justine and the Charles-Bruneau Foundations, Canada Foundation for Innovation, and by the National Sciences and Engineering Research Council (NSERC) (#RGPIN-2020-05232). K.K. is a recipient of IVADO’s postdoctoral scholarship (#4879287150). E.C. is a FRQS Junior 1 Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Caron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kovalchik, K., Hamelin, D., Caron, E. (2022). Generation of HLA Allele-Specific Spectral Libraries to Identify and Quantify Immunopeptidomes by SWATH/DIA-MS. In: Corrales, F.J., Paradela, A., Marcilla, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 2420. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1936-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1936-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1935-3

  • Online ISBN: 978-1-0716-1936-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics