Skip to main content

Liposomes for the Delivery of Lipopeptide Vaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2412))

Abstract

Liposomes, which are artificial phospholipid vesicles with a bilayer membrane structure, have been developed and evaluated as a promising delivery system for vaccines. Here, we describe a procedure for the encapsulation of lipopeptide vaccines into liposomes. A liposomal formulation of lipid-core peptide was prepared via thin-film hydration followed by extrusion. The physicochemical properties of the liposomes, including their size, polydispersity, surface charge, and morphology, were analyzed using dynamic light scattering and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giddam AK, Zaman M, Skwarczynski M, Toth I (2012) Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine 7(12):1877–1893. https://doi.org/10.2217/nnm.12.157

    Article  CAS  PubMed  Google Scholar 

  2. Nordly P, Madsen HB, Nielsen HM, Foged C (2009) Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin Drug Deliv 6(7):657–672. https://doi.org/10.1517/17425240903018863

    Article  CAS  PubMed  Google Scholar 

  3. BenMohamed L, Wechsler SL, Nesburn AB (2002) Lipopeptide vaccines—yesterday, today, and tomorrow. Lancet Infect Dis 2(7):425–431. https://doi.org/10.1016/s1473-3099(02)00318-3

    Article  CAS  PubMed  Google Scholar 

  4. Abdul Ghaffar K, Kumar Giddam A, Zaman M, Skwarczynski M, Toth I (2014) Liposomes as nanovaccine delivery systems. Curr Top Med Chem 14(9):1194–1208

    Article  CAS  Google Scholar 

  5. Bovier PA (2008) Epaxal®: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines 7(8):1141–1150

    Article  CAS  Google Scholar 

  6. Marasini N, Ghaffar KA, Skwarczynski M, Toth I (2017) Liposomes as a vaccine delivery system. In: Skwarczynski M, Toth I (eds) Micro- and nanotechnology in vaccine development. William Andrew, Norwich, pp 221–239

    Chapter  Google Scholar 

  7. Bartlett S, Eichenberger RM, Nevagi RJ, Ghaffar KA, Marasini N, Dai Y, Loukas A, Toth I, Skwarczynski M (2020) Lipopeptide-based oral vaccine against hookworm infection. J Infect Dis 221(6):934–942. https://doi.org/10.1093/infdis/jiz528

    Article  CAS  PubMed  Google Scholar 

  8. Ghaffar KA, Marasini N, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, Toth I (2017) The role of size in development of mucosal liposome-lipopeptide vaccine candidates against group A Streptococcus. Med Chem 13:22–27

    Article  CAS  Google Scholar 

  9. Marasini N, Giddam AK, Ghaffar KA, Batzloff MR, Good MF, Skwarczynski M, Toth I (2016) Multilayer engineered nanoliposomes as a novel tool for oral delivery of lipopeptide-based vaccines against group A streptococcus. Nanomedicine 11(10):1223–1236. https://doi.org/10.2217/nnm.16.36

    Article  CAS  PubMed  Google Scholar 

  10. Marasini N, Ghaffar KA, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, Toth I (2017) Highly immunogenic trimethyl chitosan-based delivery system for intranasal lipopeptide vaccines against group A streptococcus. Curr Drug Deliv 14(5):701–708

    Article  CAS  Google Scholar 

  11. Nevagi RJ, Dai W, Khalil ZG, Hussein WM, Capon RJ, Skwarczynski M, Toth I (2019) Structure-activity relationship of group A streptococcus lipopeptide vaccine candidates in trimethyl chitosan-based self-adjuvanting delivery system. Eur J Med Chem 179:100–108. https://doi.org/10.1016/j.ejmech.2019.06.047

    Article  CAS  PubMed  Google Scholar 

  12. Azuar A, Zhao L, Hei TT, Nevagi RJ, Bartlett S, Hussein WM, Khalil ZG, Capon RJ, Toth I, Skwarczynski M (2019) Cholic acid-based delivery system for vaccine candidates against group A streptococcus. ACS Med Chem Lett 10(9):1253–1259. https://doi.org/10.1021/acsmedchemlett.9b00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eskandari S, Pattinson DJ, Stephenson RJ, Groves PL, Apte SH, Sedaghat B, Chandurudu S, Doolan DL, Toth I (2018) Influence of physicochemical properties of lipopeptide adjuvants on the immune response: a rationale for engineering a potent vaccine. Chem Eur J 24(39):9892–9902

    Article  CAS  Google Scholar 

  14. Schulze K, Ebensen T, Chandrudu S, Skwarczynski M, Toth I, Olive C, Guzman CA (2017) Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. Nanomed Nanotechnol Biol Med 13(8):2463–2474

    Article  CAS  Google Scholar 

  15. Bartlett S, Skwarczynski M, Toth I (2020) Lipids as activators of innate immunity in peptide vaccine delivery. Curr Med Chem 27(17):2887–2901. https://doi.org/10.2174/0929867325666181026100849

    Article  CAS  PubMed  Google Scholar 

  16. Chandrudu S, Skwarczynski M, Pattinson D, Apte SH, Doolan DL, Toth I (2016) Synthesis and immunological evaluation of peptide-based vaccine candidates against malaria. Biochem Compound 4(1):6

    Article  Google Scholar 

  17. Hussein WM, Xu J, Simerska P, Toth I (2017) Synthesis of multicomponent peptide-based vaccine candidates against group A streptococcus. Aust J Chem 70(2):184–190

    Article  CAS  Google Scholar 

  18. Bartlett S, Skwarczynski M, Xie X, Toth I, Loukas A, Eichenberger RM (2020) Development of natural and unnatural amino acid delivery systems against hookworm infection. Precision Nanomed 3(1):471–482

    Article  Google Scholar 

  19. Fuaad AA, Pearson MS, Pickering DA, Becker L, Zhao G, Loukas AC, Skwarczynski M, Toth I (2015) Lipopeptide nanoparticles: development of vaccines against hookworm parasite. ChemMedChem 10(10):1647–1654. https://doi.org/10.1002/cmdc.201500227

    Article  CAS  PubMed  Google Scholar 

  20. Dougall AM, Skwarczynski M, Khoshnejad M, Chandrudu S, Daly NL, Toth I, Loukas A (2014) Lipid core peptide targeting the cathepsin D hemoglobinase of Schistosoma mansoni as a component of a schistosomiasis vaccine. Hum Vaccin Immunother 10(2):399–409. https://doi.org/10.4161/hv.27057

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad Fuaad AA, Roubille R, Pearson MS, Pickering DA, Loukas AC, Skwarczynski M, Toth I (2015) The use of a conformational cathepsin D-derived epitope for vaccine development against Schistosoma mansoni. Bioorg Med Chem 23(6):1307–1312. https://doi.org/10.1016/j.bmc.2015.01.033

    Article  CAS  PubMed  Google Scholar 

  22. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G, Forouzanfar MH, Longenecker CT, Mayosi BM, Mensah GA, Nascimento BR, Ribeiro ALP, Sable CA, Steer AC, Naghavi M, Mokdad AH, Murray CJL, Vos T, Carapetis JR, Roth GA (2017) Global, regional, and national burden of rheumatic heart disease, 1990-2015. N Engl J Med 377(8):713–722. https://doi.org/10.1056/NEJMoa1603693

    Article  PubMed  Google Scholar 

  23. Abdel-Aal AB, Batzloff MR, Fujita Y, Barozzi N, Faria A, Simerska P, Moyle PM, Good MF, Toth I (2008) Structure-activity relationship of a series of synthetic lipopeptide self-adjuvanting group a streptococcal vaccine candidates. J Med Chem 51(1):167–172. https://doi.org/10.1021/jm701091d

    Article  CAS  PubMed  Google Scholar 

  24. Zaman M, Abdel-Aal AB, Fujita Y, Ziora ZM, Batzloff MR, Good MF, Toth I (2012) Structure-activity relationship for the development of a self-adjuvanting mucosally active lipopeptide vaccine against Streptococcus pyogenes. J Med Chem 55(19):8515–8523. https://doi.org/10.1021/jm301074n

    Article  CAS  PubMed  Google Scholar 

  25. Ghaffar KA, Marasini N, Giddam AK, Batzloff MR, Good MF, Skwarczynski M, Toth I (2016) Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomater 41:161–168. https://doi.org/10.1016/j.actbio.2016.04.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Istvan Toth or Mariusz Skwarczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, J., Azuar, A., Toth, I., Skwarczynski, M. (2022). Liposomes for the Delivery of Lipopeptide Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2412. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1892-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1892-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1891-2

  • Online ISBN: 978-1-0716-1892-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics