Skip to main content

Fundamentals of Fish Vaccination

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2411))

Abstract

Fish health management has become a critical component of disease control and is invaluable for improved harvests and sustainable aquaculture. Vaccination is generally accepted as the most effective prophylactic measure for fish disease prevention, on environmental, social, and economic grounds. Although the historical approach for developing fish vaccines was based on the principle of Louis Pasteur’s “isolate, inactivate and inject,” but their weak immunogenicity and low efficacies in many cases, have shifted the focus of fish vaccine development from traditional to next-generation technologies. However, before any fish vaccine can be successfully commercialized, several hurdles need to be overcome regarding the production cost, immunogenicity, effectiveness, mode of administration, environmental safety, and associated regulatory concerns. In this context, the chapter summarises the basic aspects of fish vaccination such as type of vaccine, modalities of vaccine delivery, the immunological basis of fish immunization as well as different challenges associated with the development process and future opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FAO (2018) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  2. Adams A (2019) Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol 90:210–214

    Article  CAS  PubMed  Google Scholar 

  3. Ellis AE (1988) General principals of fish vaccination. In: Fish vaccination. Academic, New York, pp 1–19

    Google Scholar 

  4. Clem LW, Miller NW, Bly JE (1991) Evolution of lymphocyte subpopulations, their interactions and temperature sensitivities. In: Warr GW, Cohen N (eds) Phylogenesis of immune functions. CRC, Boca Raton, FL, pp 191–213

    Google Scholar 

  5. Ellis AE, Burrows AS, Hastings TS, Stapleton KJ (1988a) Identification of Aeromonas salmonicida extracellular protease as a protective antigen against furunculosis by passive immunisation. Aquaculture 70(3):207–218

    Article  CAS  Google Scholar 

  6. Ellis AE, Stapleton KJ, Hastings TS (1988b) The humoral immune response of rainbow trout (Salmo gairdneri) immunised by various regimes and preparations of Aeromonas salmonicida antigens. Vet Immunol Immunopathol 19(2):153–164

    Article  CAS  PubMed  Google Scholar 

  7. Salinas I, Zhang YA, Sunyer JO (2011) Mucosal immunoglobulins and B cells of teleost fish. Develop Comparat Immunol 35(12):1346–1365

    Article  CAS  Google Scholar 

  8. Salinas I (2015) The mucosal immune system of teleost fish. Biology 4(3):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bromage ES, Kaattari IM, Zwollo P, Kaattari SL (2004) Plasmablast and plasma cell production and distribution in trout immune tissues. J Immunol 173(12):7317–7323

    Article  CAS  PubMed  Google Scholar 

  10. Zwollo P, Cole S, Bromage E, Kaattari S (2005) B cell heterogeneity in the teleost kidney: evidence for a maturation gradient from anterior to the posterior kidney. J Immunol 174(11):6608–6616

    Article  CAS  PubMed  Google Scholar 

  11. Munang’andu HM, Fredriksen BN, Mutoloki S, Dalmo RA, Evensen Ø (2013) Antigen dose and humoral immune response correspond with protection for inactivated infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L). Vet Res 44(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, Gómez-Casado E, Novoa B, Mulero V, Sitjà-Bobadilla A, Pérez-Sánchez J (2016) Differential modulation of IgT and IgM upon parasitic, bacterial, viral, and dietary challenges in a Perciform fish. Front Immunol 7:637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xu C, Mutoloki S, Evensen Ø (2012) Superior protection conferred by inactivated whole virus vaccine over subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon (Salmo salar L.). Vaccine 30(26):3918–3928

    Article  CAS  PubMed  Google Scholar 

  14. Utke K, Kock H, Schuetze H, Bergmann SM, Lorenzen N, Einer-Jensen K, Köllner B, Dalmo RA, Vesely T, Ototake M, Fischer U (2008) Cell-mediated immune responses in rainbow trout after DNA immunisation against the viral hemorrhagic septicemia virus. Develop Comparat Immunol 32(3):239–252

    Article  CAS  Google Scholar 

  15. Ballesteros NA, Saint-Jean SR, Perez-Prieto SI (2014) Food pellets as an effective delivery method for a DNA vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish Shellfish Immunol 37(2):220–228

    Article  CAS  PubMed  Google Scholar 

  16. Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G (2007) Current status of veterinary vaccines. Clin Microbiol Rev 20(3):489–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. LaPatra S, Kao S, Erhardt EB, Salinas I (2015) Evaluation of dual nasal delivery of infectious hematopoietic necrosis virus and enteric red mouth vaccines in rainbow trout (Oncorhynchus mykiss). Vaccine 33(6):771–776

    Article  CAS  PubMed  Google Scholar 

  18. Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE (2002) Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Develop Comparat Immunol 26(2):173–179

    Article  CAS  Google Scholar 

  19. Hølvold LB, Myhr AI, Dalmo RA (2014) Strategies and hurdles using DNA vaccines to fish. Vet Res 45(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Adams A, Aoki T, Berthe C, Grisez L, Karunasagar I (2008) Recent technological advancements on aquatic animal health and their contributions toward reducing disease risks-a review. In: Diseases in Asian aquaculture VI. Colombo, Sri Lanka: fish health section. Asian Fisheries Society, pp 71–88

    Google Scholar 

  21. Biacchesi S (2011) The reverse genetics applied to fish RNA viruses. Vet Res 42(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olsen CM, Pemula AK, Braaen S, Sankaran K, Rimstad E (2013) Salmonid alphavirus replicon is functional in fish, mammalian and insect cells and in vivo in shrimps (Litopenaeus vannamei). Vaccine 31(48):5672–5679

    Article  CAS  PubMed  Google Scholar 

  23. Wolf A, Hodneland K, Frost P, Braaen S, Rimstad E (2013) A hemagglutinin-esterase-expressing salmonid alphavirus replicon protects Atlantic salmon (Salmo salar) against infectious salmon anemia (ISA). Vaccine 31(4):661–669

    Article  CAS  PubMed  Google Scholar 

  24. Chen M, Hu KF, Rozell B, Örvell C, Morein B, Liljeström P (2002) Vaccination with recombinant alphavirus or immune-stimulating complex antigen against respiratory syncytial virus. J Immunol 169(6):3208–3216

    Article  CAS  PubMed  Google Scholar 

  25. Noonan B, Enzmann PJ (1995) Recombinant infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus glycoprotein epitopes expressed in Aeromonas salmonicida induce protective immunity in rainbow trout (Oncorhynchus mykiss). Appl Environ Microbiol 61(10):3586–3591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Acosta F, Collet B, Lorenzen N, Ellis AE (2006) Expression of the glycoprotein of viral haemorrhagic septicaemia virus (VHSV) on the surface of the fish cell line RTG-P1 induces type 1 interferon expression in neighbouring cells. Fish Shellfish Immunol 21(3):272–278

    Article  CAS  PubMed  Google Scholar 

  27. Vakharia VN (2005) Sub-unit vaccine for infectious pancreatic necrosis virus. US Patent 6,936,256, University of Maryland Biotechnology Institute (UMBI)

    Google Scholar 

  28. Lecocq-Xhonneux F, Thiry M, Dheur I, Rossius M, Vanderheijden N, Martial J, De Kinkelin P (1994) A recombinant viral haemorrhagic septicaemia virus glycoprotein expressed in insect cells induces protective immunity in rainbow trout. J Gen Virol 75(7):1579–1587

    Article  CAS  PubMed  Google Scholar 

  29. Muktar Y, Tesfaye S, Tesfaye B (2016) Present status and future prospects of fish vaccination: a review. J Vet Sci Technol 7:2

    Article  CAS  Google Scholar 

  30. Leong JC, Anderson E, Bootland LM, Chiou PW, Johnson M, Kim C, Mourich D, Trobridge G (1997) Fish vaccine antigens produced or delivered by recombinant DNA technologies. Dev Biol Stand 90:267–277

    CAS  PubMed  Google Scholar 

  31. Lorenzen N, Olesen NJ (1997) Immunisation with viral antigens: viral haemorrhagic septicaemia. Dev Biol Stand 90:201–209

    CAS  PubMed  Google Scholar 

  32. Schillberg S, Raven N, Fischer R, Twyman M, R. and Schiermeyer, A. (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19(31):5531–5542

    Article  CAS  PubMed  Google Scholar 

  33. Shin YJ, Kwon TH, Seo JY, Kim TJ (2013) Oral immunisation of fish against iridovirus infection using recombinant antigen produced from rice callus. Vaccine 31(45):5210–5215

    Article  CAS  PubMed  Google Scholar 

  34. Brudeseth BE, Wiulsrød R, Fredriksen BN, Lindmo K, Løkling KE, Bordevik M, Steine N, Klevan A, Gravningen K (2013) Status and future perspectives of vaccines for industrialised finfish farming. Fish Shellfish Immunol 35(6):1759–1768

    Article  CAS  PubMed  Google Scholar 

  35. Evensen O, Brudeseth B, Mutoloki S (2005) Session IV-new adjuvants, formulation technologies and delivery methods-the vaccine formulation and its role in inflammatory processes in fish--effects and adverse effects. Dev Biol 121:117–126

    CAS  Google Scholar 

  36. Horne MT (1997) Technical aspects of the administration of vaccines. Dev Biol Stand 90:79–89

    CAS  PubMed  Google Scholar 

  37. Busch RA (1997) Polyvalent vaccines in fish: the interactive effects of multiple antigens. Dev Biol Stand 90:245

    CAS  PubMed  Google Scholar 

  38. Mutoloki S, Alexandersen S, Evensen Ø (2004) A sequential study of antigen persistence and concomitant inflammatory reactions relative to side-effects and growth of Atlantic salmon (Salmo salar L.) following intraperitoneal injection with oil-adjuvanted vaccines. Fish Shellfish Immunol 16(5):633–644

    Article  PubMed  Google Scholar 

  39. Mutoloki S, Brudeseth B, Reite OB, Evensen Ø (2006) The contribution of Aeromonas salmonicida extracellular products to the induction of inflammation in Atlantic salmon (Salmo salar L.) following vaccination with oil-based vaccines. Fish Shellfish Immunol 20(1):1–11

    Article  CAS  PubMed  Google Scholar 

  40. Mutoloki S, Alexandersen S, Gravningen K, Evensen Ø (2008) Time-course study of injection site inflammatory reactions following intraperitoneal injection of Atlantic cod (Gadus morhua L.) with oil-adjuvanted vaccines. Fish Shellfish Immunol 24(4):386–393

    Article  CAS  PubMed  Google Scholar 

  41. Munang’andu HM, Mutoloki S, Evensen Ø (2015) An overview of challenges limiting the design of protective mucosal vaccines for finfish. Front Immunol 6:542

    PubMed  PubMed Central  Google Scholar 

  42. Du Y, Tang X, Sheng X, Xing J, Zhan W (2017) The influence of concentration of inactivated Edwardsiella tarda bacterin and immersion time on antigen uptake and expression of immune-related genes in Japanese flounder (Paralichthys olivaceus). Microb Pathog 103:19–28

    Article  CAS  PubMed  Google Scholar 

  43. Moore JD, Ototake M, Nakanishi T (1998) Particulate antigen uptake during immersion immunisation of fish: the effectiveness of prolonged exposure and the roles of skin and gill. Fish Shellfish Immunol 8(6):393–408

    Article  Google Scholar 

  44. Glenney GW, Petrie-Hanson L (2006) Fate of fluorescent microspheres in developing Ictalurus punctatus following prolonged immersion. Fish Shellfish Immunol 20(5):758–768

    Article  CAS  PubMed  Google Scholar 

  45. Gao Y, Tang X, Sheng X, Xing J, Zhan W (2016) Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment. Fish Shellfish Immunol 55:274–280

    Article  CAS  PubMed  Google Scholar 

  46. Huising MO, Guichelaar T, Hoek C, Verburg-van Kemenade BL, Flik G, Savelkoul HF, Rombout JH (2003) Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment. Vaccine 21(27–30):4178–4193

    Article  CAS  PubMed  Google Scholar 

  47. Soto E, Brown N, Gardenfors ZO, Yount S, Revan F, Francis S, Kearney MT, Camus A (2014) Effect of size and temperature at vaccination on immunisation and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia. Fish Shellfish Immunol 41(2):593–599

    Article  CAS  PubMed  Google Scholar 

  48. Hwang JY, Kwon MG, Kim YJ, Jung SH, Park MA, Son MH (2017) Montanide IMS 1312 VG adjuvant enhances the efficacy of immersion vaccine of inactivated viral hemorrhagic septicemia virus (VHSV) in olive flounder, Paralichthys olivaceus. Fish Shellfish Immunol 60:420–425

    Article  CAS  PubMed  Google Scholar 

  49. Ji J, Merino S, Tomás JM, Roher N (2019) Nanoliposomes encapsulating immunostimulants modulate the innate immune system and elicit protection in zebrafish larvae. Fish Shellfish Immunol 92:421–429

    Article  CAS  PubMed  Google Scholar 

  50. Kole S, Qadiri SSN, Shin SM, Kim WS, Lee J, Jung SJ (2019) PLGA encapsulated inactivated-viral vaccine: formulation and evaluation of its protective efficacy against viral haemorrhagic septicaemia virus (VHSV) infection in olive flounder (Paralichthys olivaceus) vaccinated by mucosal delivery routes. Vaccine 37(7):973–983

    Article  CAS  PubMed  Google Scholar 

  51. Skov J, Chettri JK, Jaafar RM, Kania PW, Dalsgaard I, Buchmann K (2018) Effects of soluble immunostimulants on mucosal immune responses in rainbow trout immersion-vaccinated against Yersinia ruckeri. Aquaculture 492:237–246

    Article  CAS  Google Scholar 

  52. Wang Y, Wang X, Huang J, Li J (2016) Adjuvant effect of Quillaja saponaria saponin (QSS) on protective efficacy and IgM generation in turbot (Scophthalmus maximus) upon immersion vaccination. Int J Mol Sci 17(3):325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nakanishi T, Kiryu I, Ototake M (2002) Development of a new vaccine delivery method for fish: percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine 20(31–32):3764–3769

    Article  CAS  PubMed  Google Scholar 

  54. Yun S, Giri SS, Kim HJ, Kim SG, Kim SW, Kang JW, Han SJ, Kwon J, Oh WT, Chi C, Jun JW (2019) Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach. Fish Shellfish Immunol 91:12–18

    Article  CAS  PubMed  Google Scholar 

  55. Johnson KA, Amend DF (1983) Efficacy of vibrio anguillarum and Yersinia ruckeri bacterins applied by oral and anal intubation of salmonids. J Fish Dis 6(5):473–476

    Article  Google Scholar 

  56. Rombout JW, Blok LJ, Lamers CH, Egberts E (1986) Immunisation of carp (Cyprinus carpio) with a Vibrio anguillarum bacterin: indications for a common mucosal immune system. Develop Comparat Immunol 10(3):341–351

    Article  CAS  Google Scholar 

  57. Joosten PHM, Engelsma MY, Van der Zee MD, Rombout JHWM (1997) Induction of oral tolerance in carp (Cyprinus carpio L.) after feeding protein antigens. Vet Immunol Immunopathol 60(1–2):187–196

    Article  CAS  PubMed  Google Scholar 

  58. Rombout JHWM, Kiron V (2014) Mucosal vaccination of fish. In: Fish vaccination, pp 56–67

    Chapter  Google Scholar 

  59. Dhar AK, Manna SK, Allnutt FT (2014) Viral vaccines for farmed finfish. Virus Dis 25(1):1–17

    Article  Google Scholar 

  60. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5(7):396–397

    Article  CAS  Google Scholar 

  61. Dalmo R, Bøgwald J, Tafalla C (2016) Adjuvants and delivery methods: current and novel. In: Fish vaccines. Springer, Basel, pp 75–103

    Chapter  Google Scholar 

  62. Schijns VE (2001) Induction and direction of immune responses by vaccine adjuvants. Crit Rev Immunol 21(1–3):75–85

    CAS  PubMed  Google Scholar 

  63. Ribeiro CM, Schijns VE (2010) Immunology of vaccine adjuvants. In: Vaccine adjuvants. Humana Press, Totowa, NJ, pp 1–14

    Google Scholar 

  64. Opie EL, Freund J (1937) An experimental study of protective inoculation with heat-killed tubercle bacilli. J Exp Med 66(6):761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gjessing MC, Falk K, Weli SC, Koppang EO, Kvellestad A (2012) A sequential study of incomplete Freund’s adjuvant-induced peritonitis in Atlantic cod. Fish Shellfish Immunol 32(1):141–150

    Article  CAS  PubMed  Google Scholar 

  66. Lawrence GW, Saul A, Giddy AJ, Kemp R, Pye D (1997) Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine 15(2):176–178

    Article  CAS  PubMed  Google Scholar 

  67. Ravelo C, Magariños B, Herrero MC, Costa L, Toranzo AE, Romalde JL (2006) Use of adjuvanted vaccines to lengthen the protection against lactococcosis in rainbow trout (Oncorhynchus mykiss). Aquaculture 251(2–4):153–158

    Article  CAS  Google Scholar 

  68. Bastardo A, Ravelo C, Castro N, Calheiros J, Romalde JL (2012) Effectiveness of bivalent vaccines against Aeromonas hydrophila and Lactococcus garvieae infections in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Shellfish Immunol 32(5):756–761

    Article  CAS  PubMed  Google Scholar 

  69. Ninomiya K, Yamamoto M (2001) Efficacy of oil-adjuvanted vaccines for bacterial hemorrhagic ascites in ayu Plecoglossus altivelis. Fish Pathol 36(3):183–185

    Article  Google Scholar 

  70. Poobalane S, Thompson KD, Ardó L, Verjan N, Han HJ, Jeney G, Hirono I, Aoki T, Adams A (2010) Production and efficacy of an Aeromonas hydrophila recombinant S-layer protein vaccine for fish. Vaccine 28(20):3540–3547

    Article  CAS  PubMed  Google Scholar 

  71. Chen D, Ainsworth AJ (1992) Glucan administration potentiates immune defence mechanisms of channel catfish, Ictalurus punctatus Rafinesque. J Fish Dis 15(4):295–304

    Article  CAS  Google Scholar 

  72. Dalmo RA, Bøgwald J (2008) ß-glucans as conductors of immune symphonies. Fish Shellfish Immunol 25(4):384–396

    Article  CAS  PubMed  Google Scholar 

  73. Figueras A, Santarém MM, Novoa B (1998) Influence of the sequence of administration of β-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.). Vet Immunol Immunopathol 64(1):59–68

    Article  CAS  PubMed  Google Scholar 

  74. Kamilya D, Maiti TK, Joardar SN, Mal BC (2006) Adjuvant effect of mushroom glucan and bovine lactoferrin upon Aeromonas hydrophila vaccination in catla, Catla catla (Hamilton). J Fish Dis 29(6):331–337

    Article  CAS  PubMed  Google Scholar 

  75. Rørstad G, Aasjord PM, Robertsen B (1993) Adjuvant effect of a yeast glucan in vaccines against furunculosis in Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol 3(3):179–190

    Article  Google Scholar 

  76. Samuel M, Lam TJ, Sin YM (1996) Effect of Laminaran [β (1, 3)-D-Glucan] on the protective immunity of blue gourami, Trichogaster trichopterus against Aeromonas hydrophila. Fish Shellfish Immunol 6(6):443–454

    Article  Google Scholar 

  77. Skov J, Kania PW, Holten-Andersen L, Fouz B, Buchmann K (2012) Immunomodulatory effects of dietary β-1, 3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri. Fish Shellfish Immunol 33(1):111–120

    Article  CAS  PubMed  Google Scholar 

  78. Fan T, Hu X, Wang L, Geng X, Jiang G, Yang X, Yu M (2012) Development of an inactivated iridovirus vaccine against turbot viral reddish body syndrome. J Ocean Univ China 11(1):65–69

    Article  CAS  Google Scholar 

  79. Jiao XD, Cheng S, Hu YH, Sun L (2010a) Comparative study of the effects of aluminum adjuvants and Freund’s incomplete adjuvant on the immune response to an Edwardsiella tarda major antigen. Vaccine 28(7):1832–1837

    Article  CAS  PubMed  Google Scholar 

  80. Jiao XD, Hu YH, Sun L (2010b) Dissection and localisation of the immunostimulating domain of Edwardsiella tarda FliC. Vaccine 28(34):5635–5640

    Article  CAS  PubMed  Google Scholar 

  81. Mulvey B, Landolt ML, Busch RA (1995) Effects of potassium aluminium sulphate (alum) used in an Aeromonas salmonicida bacterin on Atlantic salmon, Salmo salar L. J Fish Dis 18(6):495–506

    Article  CAS  Google Scholar 

  82. Tyler JW, Klesius PH (1994) Protection against enteric septicemia of catfish (Ictalurus punctatus) by immunisation with the R-mutant, Escherichia coli (J5). Am J Vet Res 55(9):1256

    CAS  PubMed  Google Scholar 

  83. Vinay TN, Kim YJ, Jung MH, Kim WS, Kim DH, Jung SJ (2013) Inactivated vaccine against viral hemorrhagic septicemia (VHS) emulsified with squalene and aluminum hydroxide adjuvant provides long term protection in olive flounder (Paralichthys olivaceus). Vaccine 31(41):4603–4610

    Article  CAS  PubMed  Google Scholar 

  84. Ashida T, Okimasu E, Ui M, Heguri M, Oyama Y, Amemura A (1999) Protection of Japanese flounder Paralichthys olivaceus against experimental edwardsiellosis by formalin-killed Edwardsiella tarda in combination with oral administration of immunostimulants. Fish Sci 65(4):527–530

    Article  CAS  Google Scholar 

  85. Jensen I, Albuquerque A, Sommer AI, Robertsen B (2002) Effect of poly I: C on the expression of Mx proteins and resistance against infection by infectious salmon anaemia virus in Atlantic salmon. Fish Shellfish Immunol 13(4):311–326

    Article  CAS  PubMed  Google Scholar 

  86. Kim HJ, Oseko N, Nishizawa T, Yoshimizu M (2009) Protection of rainbow trout from infectious hematopoietic necrosis (IHN) by injection of infectious pancreatic necrosis virus (IPNV) or poly (I: C). Dis Aquat Org 83(2):105–113

    Article  Google Scholar 

  87. Nishizawa T, Takami I, Kokawa Y, Yoshimizu M (2009) Fish immunisation using a synthetic double-stranded RNA poly (I: C), an interferon inducer, offers protection against RGNNV, a fish nodavirus. Dis Aquat Org 83(2):115–122

    Article  Google Scholar 

  88. Oh MJ, Takami I, Nishizawa T, Kim WS, Kim CS, Kim SR, Park MA (2012) Field tests of poly (I: C) immunisation with nervous necrosis virus (NNV) in sevenband grouper, Epinephelus septemfasciatus (Thunberg). J Fish Dis 35(3):187–191

    Article  CAS  PubMed  Google Scholar 

  89. Takami I, Kwon SR, Nishizawa T, Yoshimizu M (2010) Protection of Japanese flounder Paralichthys olivaceus from viral hemorrhagic septicemia (VHS) by poly (I: C) immunisation. Dis Aquat Org 89(2):109–115

    Article  CAS  Google Scholar 

  90. Carrington AC, Secombes CJ (2007) CpG oligodeoxynucleotides up-regulate antibacterial systems and induce protection against bacterial challenge in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 23(4):781–792

    Article  CAS  PubMed  Google Scholar 

  91. Jung MH, Jung SJ (2017) CpG ODN 1668 induce innate and adaptive immune responses in rock bream (Oplegnathus fasciatus) against rock bream iridovirus (RBIV) infection. Fish Shellfish Immunol 69:247–257

    Article  CAS  PubMed  Google Scholar 

  92. Liu CS, Sun Y, Hu YH, Sun L (2010) Identification and analysis of the immune effects of CpG motifs that protect Japanese flounder (Paralichthys olivaceus) against bacterial infection. Fish Shellfish Immunol 29(2):279–285

    Article  CAS  PubMed  Google Scholar 

  93. Martinez-Alonso S, Martinez-Lopez A, Estepa A, Cuesta A, Tafalla C (2011) The introduction of multi-copy CpG motifs into an antiviral DNA vaccine strongly up-regulates its immunogenicity in fish. Vaccine 29(6):1289–1296

    Article  CAS  PubMed  Google Scholar 

  94. Thim HL, Iliev DB, Christie KE, Villoing S, McLoughlin MF, Strandskog G, Jørgensen JB (2012) Immunoprotective activity of a Salmonid Alphavirus Vaccine: comparison of the immune responses induced by inactivated whole virus antigen formulations based on CpG class B oligonucleotides and poly I: C alone or combined with an oil adjuvant. Vaccine 30(32):4828–4834

    Article  CAS  PubMed  Google Scholar 

  95. Caipang CMA, Hirono I, Aoki T (2005) Induction of antiviral state in fish cells by Japanese flounder, Paralichthys olivaceus, interferon regulatory factor-1. Fish Shellfish Immunol 19(1):79–91

    Article  CAS  PubMed  Google Scholar 

  96. Caipang CMA, Hirono I, Aoki T (2009) Modulation of the early immune response against viruses by a teleostean interferon regulatory factor-1 (IRF-1). Comp Biochem Physiol A Mol Integr Physiol 152(3):440–446

    Article  PubMed  CAS  Google Scholar 

  97. Jimenez N, Coll J, Salguero FJ, Tafalla C (2006) Co-injection of interleukin 8 with the glycoprotein gene from viral haemorrhagic septicemia virus (VHSV) modulates the cytokine response in rainbow trout (Oncorhynchus mykiss). Vaccine 24(27–28):5615–5626

    Article  CAS  PubMed  Google Scholar 

  98. Kumari R, Kole S, Soman P, Rathore G, Tripathi G, Makesh M, Rajendran KV, Bedekar MK (2018) Bicistronic DNA vaccine against Edwardsiella tarda infection in Labeo rohita: construction and comparative evaluation of its protective efficacy against monocistronic DNA vaccine. Aquaculture 485:201–209

    Article  CAS  Google Scholar 

  99. Sanchez E, Coll J, Tafalla C (2007) Expression of inducible CC chemokines in rainbow trout (Oncorhynchus mykiss) in response to a viral haemorrhagic septicemia virus (VHSV) DNA vaccine and interleukin 8. Develop Comparat Immunol 31(9):916–926

    Article  CAS  Google Scholar 

  100. Yin Z, Kwang J (2000) Carp interleukin-1β in the role of an immuno-adjuvant. Fish Shellfish Immunol 10(4):375–378

    Article  CAS  PubMed  Google Scholar 

  101. Jiao XD, Zhang M, Hu YH, Sun L (2009) Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens. Vaccine 27(38):5195–5202

    Article  CAS  PubMed  Google Scholar 

  102. Wilhelm V, Miquel A, Burzio LO, Rosemblatt M, Engel E, Valenzuela S, Parada G, Valenzuela PD (2006) A vaccine against the salmonid pathogen Piscirickettsia salmonis based on recombinant proteins. Vaccine 24(23):5083–5091

    Article  CAS  PubMed  Google Scholar 

  103. Sinyakov MS, Dror M, Lublin-Tennenbaum T, Salzberg S, Margel S, Avtalion RR (2006) Nano-and microparticles as adjuvants in vaccine design: success and failure is related to host natural antibodies. Vaccine 24(42–43):6534–6541

    Article  CAS  PubMed  Google Scholar 

  104. Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK (2014) Nanotechnology and vaccine development. Asian J Pharm Sci 9(5):227–235

    Article  Google Scholar 

  105. Akagi T, Baba M, Akashi M (2011) Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine. In: Polymers in nanomedicine. Springer, Berlin, Heidelberg, pp 31–64

    Chapter  Google Scholar 

  106. Long A, Fehringer TR, LaFrentz BR, Call DR, Cain KD (2014) Development of a waterborne challenge model for Flavobacterium psychrophilum. FEMS Microbiol Lett 359(2):154–160

    Article  CAS  PubMed  Google Scholar 

  107. Madetoja J, Nyman P, Wiklund T (2000) Flavobacterium psychrophilum, invasion into and shedding by rainbow trout Oncorhynchus mykiss. Dis Aquat Org 43(1):27–38

    Article  CAS  Google Scholar 

  108. Bayliss SC, Verner-Jeffreys DW, Bartie KL, Aanensen DM, Sheppard SK, Adams A, Feil EJ (2017) The promise of whole genome pathogen sequencing for the molecular epidemiology of emerging aquaculture pathogens. Front Microbiol 8:121

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ngo TP, Bartie KL, Thompson KD, Verner-Jeffreys DW, Hoare R, Adams A (2017) Genetic and serological diversity of Flavobacterium psychrophilum isolates from salmonids in the United Kingdom. Vet Microbiol 201:216–224

    Article  PubMed  Google Scholar 

  110. Dalmo RA (2018) DNA vaccines for fish: review and perspectives on correlates of protection. J Fish Dis 41(1):1–9

    Article  CAS  PubMed  Google Scholar 

  111. Frey J (2007) Biological safety concepts of genetically modified live bacterial vaccines. Vaccine 25(30):5598–5605

    Article  CAS  PubMed  Google Scholar 

  112. Gregory AE, Williamson D, Titball R (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Ji J, Torrealba D, Ruyra À, Roher N (2015) Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology 4(4):664–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Munang’andu HM, Fredriksen BN, Mutoloki S, Brudeseth B, Kuo TY, Marjara IS, Dalmo RA, Evensen Ø (2012) Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model. Vaccine 30(27):4007–4016

    Article  PubMed  CAS  Google Scholar 

  115. Mikalsen AB, Haugland O, Rode M, Solbakk IT, Evensen O (2012) Atlantic salmon reovirus infection causes a CD8 T cell myocarditis in Atlantic salmon (Salmo salar L.). PLoS One 7(6):e37269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Haugland Ø, Mikalsen AB, Nilsen P, Lindmo K, Thu BJ, Eliassen TM, Roos N, Rode M, Evensen Ø (2011) Cardiomyopathy syndrome of Atlantic salmon (Salmo salar L.) is caused by a double-stranded RNA virus of the Totiviridae family. J Virol 85(11):5275–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Munang’andu HM, Evensen Ø (2019) Correlates of protective immunity for fish vaccines. Fish Shellfish Immunol 85:132–140

    Article  PubMed  CAS  Google Scholar 

  118. Secombes CJ, Belmonte R (2016) Overview of the fish adaptive immune system. In: Fish vaccines. Springer, Basel, pp 35–52

    Chapter  Google Scholar 

  119. Pasnik DJ, Evans JJ, Klesius PH (2006) Passive immunisation of Nile tilapia (Oreochromis niloticus) provides significant protection against Streptococcus agalactiae. Fish Shellfish Immunol 21(4):365–371

    Article  CAS  PubMed  Google Scholar 

  120. Shelby RA, Klesius PH, Shoemaker CA, Evans JJ (2002) Passive immunisation of tilapia, Oreochromis niloticus (L.), with anti-Streptococcus iniae whole sera. J Fish Dis 25(1):1–6

    Article  Google Scholar 

  121. LaPatra SE, Plant KP, Alcorn S, Ostland V, Winton J (2010) An experimental vaccine against Aeromonas hydrophila can induce protection in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 33(2):143–151

    Article  CAS  PubMed  Google Scholar 

  122. LaFrentz BR, LaPatra SE, Jones GR, Cain KD (2003) Passive immunisation of rainbow trout, Oncorhynchus mykiss (Walbaum), against Flavobacterium psychrophilum, the causative agent of bacterial Coldwater disease and rainbow trout fry syndrome. J Fish Dis 26(7):377–384

    Article  Google Scholar 

  123. Eldar A, Horovitcz A, Bercovier H (1997) Development and efficacy of a vaccine against Streptococcus iniae infection in farmed rainbow trout. Vet Immunol Immunopathol 56(1–2):175–183

    Article  CAS  PubMed  Google Scholar 

  124. LaPatra SE, Lauda KA, Jones GR (1994) Antigenic variants of infectious hematopoietic necrosis virus and implications for vaccine development. Dis Aquat Org 20:119–119

    Article  Google Scholar 

  125. Olesen NJ (1991) Detection of the antibody response in rainbow trout following immersion vaccination with Yersinia ruckeri bacterins by ELISA and passive immunisation. J Appl Ichthyol 7(1):36–43

    Article  Google Scholar 

  126. Lorenzen N, Lorenzen E, Einer-Jensen K, Heppell J, Wu T, Davis H (1998) Protective immunity to VHS in rainbow trout (Oncorhynchus mykiss, Walbaum) following DNA vaccination. Fish Shellfish Immunol 8(4):261–270

    Article  Google Scholar 

  127. Akhlaghi M (1999) Passive immunisation of fish against vibriosis, comparison of intraperitoneal, oral and immersion routes. Aquaculture 180(3–4):191–205

    Article  Google Scholar 

  128. Swain P, Dash S, Bal J, Routray P, Sahoo PK, Sahoo SK, Saurabh S, Gupta SD, Meher PK (2006) Passive transfer of maternal antibodies and their existence in eggs, larvae and fry of Indian major carp, Labeo rohita (Ham.). Fish Shellfish Immunol 20(4):519–527

    Article  CAS  PubMed  Google Scholar 

  129. Shelby RA, Shoemaker CA, Klesius PH (2007) Passive immunisation of channel catfish Ictalurus punctatus with anti-Flavobacterium columnare sera. Dis Aquat Org 77(2):143–147

    Article  CAS  Google Scholar 

  130. Pasnik DJ, Evans JJ, Klesius PH (2011) Specific serum antibody responses in channel catfish (Ictalurus punctatus) provide limited protection against Streptococcus ictaluri challenge. Vet Immunol Immunopathol 144(1–2):144–146

    Article  CAS  PubMed  Google Scholar 

  131. Lin TL, Clark TG, Dickerson H (1996) Passive immunisation of channel catfish (Ictalurus punctatus) against the ciliated protozoan parasite Ichthyophthirius multifiliis by use of murine monoclonal antibodies. Infect Immun 64(10):4085–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bricknell IR, King JA, Bowden TJ, Ellis AE (1999) Duration of protective antibodies, and the correlation with protection in Atlantic salmon (Salmo salar L.), following vaccination with an Aeromonas salmonicida vaccine containing iron-regulated outer membrane proteins and secretory polysaccharide. Fish Shellfish Immunol 9(2):139–151

    Article  Google Scholar 

  133. Parra D, Takizawa F, Sunyer JO (2013) Evolution of B cell immunity. Ann Rev Anim Biosci 1(1):65–97

    Article  CAS  Google Scholar 

  134. Ahmadivand S, Soltani M, Behdani M, Evensen Ø, Alirahimi E, Soltani E, Hassanzadeh R, Ashrafi-Helan J (2018) VP2 (PTA motif) encoding DNA vaccine confers protection against lethal challenge with infectious pancreatic necrosis virus (IPNV) in trout. Mol Immunol 94:61–67

    Article  CAS  PubMed  Google Scholar 

  135. Zhao JZ, Xu LM, Liu M, Cao YS, LaPatra SE, Yin JS, Liu HB, Lu TY (2017) Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology. Mol Immunol 85:196–204

    Article  CAS  PubMed  Google Scholar 

  136. Yamasaki M, Araki K, Maruyoshi K, Matsumoto M, Nakayasu C, Moritomo T, Nakanishi T, Yamamoto A (2015) Comparative analysis of adaptive immune response after vaccine trials using live attenuated and formalin-killed cells of Edwardsiella tarda in ginbuna crucian carp (Carassius auratus langsdorfii). Fish Shellfish Immunol 45(2):437–442

    Article  CAS  PubMed  Google Scholar 

  137. Byon JY, Ohira T, Hirono I, Aoki T (2005) Use of a cDNA microarray to study immunity against viral hemorrhagic septicemia (VHS) in Japanese flounder (Paralichthys olivaceus) following DNA vaccination. Fish Shellfish Immunol 18(2):135–147

    Article  CAS  PubMed  Google Scholar 

  138. McLauchlan PE, Collet B, Ingerslev E, Secombes CJ, Lorenzen N, Ellis AE (2003) DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, dose, route of injection and duration of protection—early protection correlates with mx expression. Fish Shellfish Immunol 15(1):39–50

    Article  CAS  PubMed  Google Scholar 

  139. Kim CH, Johnson MC, Drennan JD, Simon BE, Thomann E, Leong JAC (2000) DNA vaccines encoding viral glycoproteins induce non-specific immunity and Mx protein synthesis in fish. J Virol 74(15):7048–7054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yamashita H, Mori K, Kuroda A, Nakai T (2009) Neutralising antibody levels for protection against betanodavirus infection in sevenband grouper, Epinephelus septemfasciatus (Thunberg), immunised with an inactivated virus vaccine. J Fish Dis 32(9):767–775

    Article  CAS  PubMed  Google Scholar 

  141. Li LP, Wang R, Liang WW, Huang T, Huang Y, Luo FG, Lei AY, Chen M, Gan X (2015) Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro. Fish Shellfish Immunol 45(2):955–963

    Article  CAS  PubMed  Google Scholar 

  142. Huang HY, Chen YC, Wang PC, Tsai MA, Yeh SC, Liang HJ, Chen SC (2014) Efficacy of a formalin-inactivated vaccine against Streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunisation. Vaccine 32(51):7014–7020

    Article  CAS  PubMed  Google Scholar 

  143. Dubey S, Avadhani K, Mutalik S, Sivadasan SM, Maiti B, Paul J, Girisha SK, Venugopal MN, Mutoloki S, Evensen Ø, Karunasagar I (2016) Aeromonas hydrophila OmpW PLGA nanoparticle oral vaccine shows a dose-dependent protective immunity in rohu (Labeo rohita). Vaccine 4(2):21

    Article  CAS  Google Scholar 

  144. Pasnik DJ, Smith SA (2005) Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Vet Immunol Immunopathol 103(3–4):195–206

    Article  CAS  PubMed  Google Scholar 

  145. Yang H, Chen J, Yang G, Zhang XH, Liu R, Xue X (2009) Protection of Japanese flounder (Paralichthys olivaceus) against Vibrio anguillarum with a DNA vaccine containing the mutated zinc-metalloprotease gene. Vaccine 27(15):2150–2155

    Article  CAS  PubMed  Google Scholar 

  146. Thiery R, Cozien J, Cabon J, Lamour F, Baud M, Schneemann A (2006) Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles. J Virol 80(20):10201–10207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sommerset I, Krossøy B, Biering E, Frost P (2005a) Vaccines for fish in aquaculture. Expert Rev Vaccines 4(1):89–101

    Article  CAS  PubMed  Google Scholar 

  148. Sommerset I, Skern R, Biering E, Bleie H, Fiksdal IU, Grove S, Nerland AH (2005b) Protection against Atlantic halibut nodavirus in turbot is induced by recombinant capsid protein vaccination but not following DNA vaccination. Fish Shellfish Immunol 18(1):13–29

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Kadam Bedekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bedekar, M.K., Kole, S. (2022). Fundamentals of Fish Vaccination. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2411. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1888-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1888-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1887-5

  • Online ISBN: 978-1-0716-1888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics