Skip to main content

A Method for Developing RNAi-Derived Resistance in Cowpea Against Geminiviruses

  • Protocol
  • First Online:
Plant Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2408))

Abstract

In plants, RNA interference (RNAi) is triggered by double-stranded RNA (dsRNA). Accordingly, various RNA silencing technologies involving hpRNA, artificial microRNA (miRNA), and virus-induced gene silencing (VIGS) are used for controlling the expression of genes. Such manipulations help understanding gene functions and crop improvement biotechnology. A typical hpRNA construct is comprised of an intron splicable perfect inverted repeat of the target gene sequences under the control of a strong promoter. Geminiviruses, especially Mungbean Yellow Mosaic India Virus (MYMIV) cause devastating diseases in legume plants including cowpea, incurring severe crop loss. RNAi, involving hpRNA construct as transgene, is used to control these diseases at the early stages of geminivirus infection in the host, preventing symptom development and viral DNA accumulation. In this chapter, we describe a detailed protocol for the identification of geminivirus isolates from the filed grown cowpea plants, characterization of virus isolates under the laboratory conditions, design and construct RNAi vectors for effective suppression of viral target genes, and consequent development of transgenic cowpea using Agrobacterium-mediated transformation protocol. These transgenics are subsequently evaluated for resistance to MYMIV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zerbini FM, Briddon RW, Idris A et al (2017) ICTV virus taxonomy profile: Geminiviridae. J Gen Virol 98(2):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rybicki EP (2015) A top ten list for economically important plant viruses. Arch Virol 160(1):17–20

    Article  CAS  PubMed  Google Scholar 

  3. Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp). Field Crops Res 53:187–204

    Article  Google Scholar 

  4. Timko MP, Ehlers JD, Roberts PA (2007) Cowpea. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 3. Springer, New York, pp 49–67

    Google Scholar 

  5. Singh BB (2002) Recent genetic studies in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production. Internat Inst of Trop Agricul Ibadan, Nigeria, pp 3–13

    Google Scholar 

  6. Diouf D, Hilu KW (2005) Microsatellites and RAPD markers to study genetic relation- ship among cowpea breeding lines and local varieties in Senegal. Genet Res Crop Evol 52:1057–1067

    Article  CAS  Google Scholar 

  7. Xu P, Wu X, Wang B et al (2010) Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean [Vigna unguiculata ssp. sesquipedialis (L.) Verdc]. Mol Breed 25:675–684

    Article  CAS  Google Scholar 

  8. Kareem KT, Taiwo MA (2007) Interactions of viruses in cowpea: effects on growth and yield parameters. Virol J 4(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thottappilly G, Rossel HW (1992) Virus diseases of cowpea in tropical Africa. Int J of Pest Manage 38(4):337–348

    Google Scholar 

  10. Kang BC, Yeam I, Jahn MM (2005) Genetics of plant virus resistance. Annu Rev Phytopathol 43:581–621

    Article  CAS  PubMed  Google Scholar 

  11. Hema M, Sreenivasulu P, Patil BL et al (2014) Tropical food legumes: virus diseases of economic importance and their control. Adv Virus Res 90:431–505

    Article  CAS  PubMed  Google Scholar 

  12. Malathi VG, Surendranath B, Naghma A et al (2005) Adaptation to new hosts shown by the cloned components of Mungbean yellow mosaic India virus causing cowpea golden mosaic in northern India. Can J Plant Pathol 27(3):439–447

    Article  CAS  Google Scholar 

  13. Rouhibakhsh A, Malathi VG (2005) Severe leaf curl disease of cowpea–a new disease of cowpea in northern India caused by Mungbean yellow mosaic India virus and a satellite DNA β. Plant Pathol 54(2):259–259

    Article  Google Scholar 

  14. Surendranath B, Usharani KS, Nagma A et al (2005) Absence of interaction of genomic components and complementation between Mungbean yellow mosaic India virus isolates in cowpea. Arch Virol 150(9):1833–1844

    Article  CAS  PubMed  Google Scholar 

  15. John P, Sivalingam PN, Haq QMI et al (2008) Cowpea golden mosaic disease in Gujarat is caused by a Mungbean yellow mosaic India virus isolate with a DNA B variant. Arch Virol 153(7):1359

    Article  CAS  PubMed  Google Scholar 

  16. Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142(2):145–164

    Article  CAS  Google Scholar 

  17. Day AG, Bejarano ER, Buck KW et al (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88(15):6721–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33(2):351–357

    Article  CAS  PubMed  Google Scholar 

  19. Aragão FJL, Ribeiro SG, Barros LMG et al (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breed 4(6):491–499

    Article  Google Scholar 

  20. Zhang P, Vanderschuren H, Fütterer J, Gruissem W (2005) Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnol J 3(4):385–397

    Article  PubMed  CAS  Google Scholar 

  21. Haq QMI, Ali A, Malathi VG (2010) Engineering resistance against Mungbean yellow mosaic India virus using antisense RNA. Indian J Virol 21(1):82–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patil BL, Bagewadi B, Yadav JS et al (2016) Mapping and identification of cassava mosaic geminivirus DNA-A and DNA-B genome sequences for efficient siRNA expression and RNAi based virus resistance by transient agro-infiltration studies. Virus Res 213:109–115

    Article  CAS  PubMed  Google Scholar 

  23. Kumar S, Tanti B, Patil BL et al (2017) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS One 12(10):e0186786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Smith NA, Singh SP, Wang MB et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407(6802):319–320

    Article  CAS  PubMed  Google Scholar 

  25. Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97(9):4985–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1(6):347–356

    Article  CAS  PubMed  Google Scholar 

  27. Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411(6839):834–842

    Article  CAS  PubMed  Google Scholar 

  28. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  30. Preall JB, Sontheimer EJ (2005) RNAi: RISC gets loaded. Cell 123(4):543–545

    Article  CAS  PubMed  Google Scholar 

  31. Matranga C, Zamore PD (2007) Small silencing RNAs. Curr Biol 17(18):R789–R793

    Article  CAS  PubMed  Google Scholar 

  32. Ivashuta S, Zhang Y, Wiggins BE et al (2015) Environmental RNAi in herbivorous insects. RNA 21(5):840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gong L, Chen Y, Hu Z et al (2013) Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS One 8(5):e62990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zotti M, dos Santos EA, Cagliari D et al (2018) RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag Sci 74(6):1239–1250

    Article  CAS  PubMed  Google Scholar 

  35. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zotti MJ, Smagghe G (2015) RNAi technology for insect management and protection of beneficial insects from diseases: lessons, challenges and risk assessments. Neotrop Entomol 44(3):197–213

    Article  CAS  PubMed  Google Scholar 

  37. Agrawal N, Dasaradhi PVN, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56(3):227–235

    Article  CAS  PubMed  Google Scholar 

  39. Kumar S, Tanti B, Mukherjee SK et al (2017) Molecular characterization and infectivity of Mungbean yellow mosaic India virus associated with yellow mosaic disease of cowpea and mungbean. Biocatal Agric Biotechnol 11:183–191

    Article  Google Scholar 

  40. Kumar S, Sahoo L, Tanti B (2016) Whitefly transmitted yellow mosaic disease, severe threat to cowpea production in Assam. India World Res J Biotechnol 3(1):53–56

    Google Scholar 

  41. Haible D, Kober S, Jeske H (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135(1):9–16

    Article  CAS  PubMed  Google Scholar 

  42. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser 41:95–98

    CAS  Google Scholar 

  43. Jalender P, Bhat BN, Anitha K et al (2017) Studies on transmission of cucumber mosaic virus (CMV) by sap inoculation in tomato. Int J Pure App Biosci 5(4):1908–1912

    Article  Google Scholar 

  44. Solleti SK, Bakshi S, Sahoo L (2008) Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J Biotechnol 135(1):97–104

    Article  CAS  PubMed  Google Scholar 

  45. Solleti SK, Bakshi S, Purkayastha J et al (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27(12):1841

    Article  CAS  PubMed  Google Scholar 

  46. Behura R, Kumar S, Saha B et al (2015) Cowpea (Vigna unguiculata L. Walp). In: Wang K (ed) Agrobacterium protocols, Methods in molecular biology vol. 1223, vol 2. Springer Protocols Humana Press, Totowa, New Jersey, pp 255–264

    Chapter  Google Scholar 

  47. Bakshi S, Sadhukhan A, Mishra S et al (2011) Improved agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30(12):2281–2292

    Article  CAS  PubMed  Google Scholar 

  48. Rogers SO, Bendich AJ (1989) Extraction of DNA from plant tissues. In: Plant Mol biol Manual. Springer, Dordrecht, pp 73–83

    Chapter  Google Scholar 

  49. Patil BL, Ogwok E, Wagaba H et al (2011) RNAi-mediated resistance to diverse isolates belonging to two virus species involved in cassava brown streak disease. Mol Plant Pathol 12(1):31–41

    Article  CAS  PubMed  Google Scholar 

  50. Patil BL, Fauquet CM (2015) Differential behaviour of the genomic components of cassava mosaic geminiviruses and the diversity of their small RNA profiles. Virus Genes 50:474–486

    Article  CAS  PubMed  Google Scholar 

  51. Patil BL, Fauquet CM (2015) Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. Mol Plant Pathol 16(5):484–494

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingaraj Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, S., Mukherjee, S.K., Sahoo, L. (2022). A Method for Developing RNAi-Derived Resistance in Cowpea Against Geminiviruses. In: Mysore, K.S., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 2408. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1875-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1875-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1874-5

  • Online ISBN: 978-1-0716-1875-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics