Skip to main content

Analyzing Morphological Properties of Early-Stage Toxic Amyloid β Oligomers by Atomic Force Microscopy

  • Protocol
  • First Online:
Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2402))

Abstract

Protein misfolding diseases, like Alzheimer’s, Parkinson’s, and Huntington’s disease, are associated with misfolded protein aggregation. Alzheimer’s disease is related to a progressive neuronal death induced by small amyloid β oligomers. Here, we describe the procedure to prepare and identify different types of small toxic amyloid β oligomers by atomic force microscopy (AFM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dobson CM, Šali A, Karplus M (1998) Protein folding: a perspective from theory and experiment. Angew Chem Int Ed 37:868–893

    Article  Google Scholar 

  2. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  3. Butterfield SM, Lashuel HA (2010) Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed 49:5628–5654

    Article  CAS  Google Scholar 

  4. Linse S (2017) Monomer-dependent secondary nucleation in amyloid formation. Biophys Rev 9:329–338

    Article  CAS  Google Scholar 

  5. Arosio P, Knowles TPJ, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618

    Article  CAS  Google Scholar 

  6. Flagmeier P, De S, Wirthensohn DC et al (2017) Ultrasensitive measurement of Ca2+ influx into lipid vesicles induced by protein aggregates. Angew Chem Int Ed 56:7750–7754

    Article  CAS  Google Scholar 

  7. Ono K, Condron MM, Teplow DB (2009) Structure-neurotoxicity relationships of amyloid β-protein oligomers. Proc Natl Acad Sci 106:14745–14750

    Article  CAS  Google Scholar 

  8. Cizas P, Budvytyte R, Morkuniene R et al (2010) Size-dependent neurotoxicity of β-amyloid oligomers. Arch Biochem Biophys 496:84–92

    Article  CAS  Google Scholar 

  9. Mrdenovic D, Su Z, Kutner W et al (2020) Alzheimer’s disease-related amyloid β peptide causes structural disordering of lipids and changes the electric properties of a floating bilayer lipid membrane. Nanosc Adv 2:3467–3480

    Article  CAS  Google Scholar 

  10. Cline EN, Bicca MA, Viola KL et al (2018) The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 64:S567–S610

    Article  CAS  Google Scholar 

  11. Ciudad S, Puig E, Botzanowski T et al (2020) Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nat Commun 11:3014

    Article  CAS  Google Scholar 

  12. Quist A, Doudevski I, Lin H et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci 102:10427–10432

    Article  CAS  Google Scholar 

  13. Mrdenovic D, Majewska M, Pieta IS et al (2019) Size-dependent interaction of amyloid β oligomers with brain total lipid extract bilayer—fibrillation versus membrane destruction. Langmuir 35:11940–11949

    Article  CAS  Google Scholar 

  14. Bode DC, Freeley M, Nield J et al (2019) Amyloid-β oligomers have a profound detergent-like effect on lipid membrane bilayers, imaged by atomic force and electron microscopy. J Biol Chem 294:7566–7572

    Article  CAS  Google Scholar 

  15. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  CAS  Google Scholar 

  16. Mc Donald JM, Savva GM, Brayne C et al (2010) The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 133:1328–1341

    Article  Google Scholar 

  17. Shankar GM, Bloodgood BL, Townsend M et al (2007) Natural oligomers of the alzheimer amyloid-protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  CAS  Google Scholar 

  18. Lacor PN, Buniel MC, Furlow PW et al (2007) A oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    Article  CAS  Google Scholar 

  19. Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897

    Article  CAS  Google Scholar 

  20. Rosales-Corral S, Acuna-Castroviejo D, Tan DX et al (2012) Accumulation of exogenous amyloid-beta peptide in hippocampal mitochondria causes their dysfunction: a protective role for melatonin. Oxidative Med Cell Longev 2012:1–15

    Article  Google Scholar 

  21. Domínguez-Prieto M, Velasco A, Tabernero A et al (2018) Endocytosis and transcytosis of amyloid-β peptides by astrocytes: a possible mechanism for amyloid-β clearance in Alzheimer’s disease. J Alzheimers Dis 65:1109–1124

    Article  Google Scholar 

  22. Tomiyama T, Matsuyama S, Iso H et al (2010) A mouse model of amyloid oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856

    Article  CAS  Google Scholar 

  23. Ferretti MT, Bruno MA, Ducatenzeiler A et al (2012) Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging 33:1329–1342

    Article  CAS  Google Scholar 

  24. Kusumoto Y, Lomakin A, Teplow DB et al (1998) Temperature dependence of amyloid -protein fibrillization. Proc Natl Acad Sci 95:12277–12282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by receiving funding from the Polish National Science Centre, grant No. OPUS12 2016/23B/ST4/02791, awarded to P.P. The research activity of D.M. was supported by funds from the European Union Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 711859, and the Polish Ministry of Science and Higher Education for the implementation of an international co-financed project in the years 2017–2021. J.L. was financially supported by Discovery grant from the National Sciences and Engineering Research Council of Canada (RG-03958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Pieta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mrdenovic, D., Lipkowski, J., Pieta, P. (2022). Analyzing Morphological Properties of Early-Stage Toxic Amyloid β Oligomers by Atomic Force Microscopy. In: Cranfield, C.G. (eds) Membrane Lipids. Methods in Molecular Biology, vol 2402. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1843-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1843-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1842-4

  • Online ISBN: 978-1-0716-1843-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics