Skip to main content

Natural Polymer–Based Micronanostructured Scaffolds for Bone Tissue Engineering

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Abstract

Although bone tissue allografts and autografts aremoften used as a regenerative tissue during the bone healing, their availability, donor site morbidity, and immune response to grafted tissue are limiting factors their more common usage. Tissue engineered implants, such as acellular or cellular polymeric structures, can be an alternative solution. A variety of scaffold fabrication techniques including electrospinning, particulate leaching, particle sintering, and more recently 3D printing have been used to create scaffolds with interconnected pores and mechanical properties for tissue regeneration. Simply combining particle sintering and molecular self-assembly to create porous microstructures with imbued nanofibers to produce micronanostructures for tissue regeneration applications. Natural polymers like polysaccharides, proteins and peptides of plant or animal origin have gained significant attention due to their assured biocompatibility in tissue regeneration. However, majority of these polymers are water soluble and structures derived from them are in the form of hydrogels and require additional stabilization via cross-linking. For bone healing applications scaffolds are required to be strong, and support attachment, proliferation and differentiation of osteoprogenitors into osteoblasts. Our ongoing work utilizes plant polysaccharide cellulose derivatives and collagen to create mechanically stable and bioactive micronanostructured scaffold for bone tissue engineering. Scaffold microstructure is essentially solvent sintered cellulose acetate (CA) microspheres in the form of a negative template for trabecular bone with defined pore and mechanical properties. Collagen nanostructures are imbued into the 3D environment of CA scaffolds using collagen molecular self-assembly principles. The resultant CA-collagen micronanostructures provide the benefits of combined polymers and serve as an alternative material platform to many FDA approved polyesters. Our ongoing studies and published work confirm improved osteoprogenitor adhesion, proliferation, migration, differentiation, extracellular matrix (ECM) secretion in promoting bone healing. In this chapter we will provide a detailed protocol on the creation of micronanostructured CA-collagen scaffolds and their characterization for bone tissue engineering using human mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34

    Article  Google Scholar 

  2. Hunziker EB, Lippuner K, Keel M, Shintani N (2015) An educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospects. Osteoarthr Cartil 23(3):334–350

    Article  CAS  Google Scholar 

  3. Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review, advances in materials science and engineering. Vol 2019 Pages 3429527. https://doi.org/10.1155/2019/3429527

  4. Mata A, Kim EJ, Boehm CA, Fleischman AJ, Muschler GF, Roy S (2009) A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials 30(27):4610–4617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harley BA, Yannas IV (2014) In vivo synthesis of tissues and organs, principles of tissue engineering. Elsevier, Amsterdam, pp 325–355

    Google Scholar 

  7. Davidenko N, Schuster CF, Bax DV, Farndale RW, Hamaia S, Best SM, Cameron RE (2016) Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. J Mater Sci Mater Med 27(10):148

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441

    Article  PubMed  Google Scholar 

  9. Murphy CM, Haugh MG, O'brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3):461–466

    Article  CAS  PubMed  Google Scholar 

  10. O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  11. Yannas I, Lee E, Orgill DP, Skrabut E, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 86(3):933–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma PX, Choi J-W (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 7(1):23–33

    Article  CAS  PubMed  Google Scholar 

  13. Goodrich JT, Sandler AL, Tepper O (2012) A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv Syst 28(9):1577–1588

    Article  PubMed  Google Scholar 

  14. Courtenay JC, Sharma RI, Scott JL (2018) Recent advances in modified cellulose for tissue culture applications. Molecules 23(3):654

    Article  PubMed Central  Google Scholar 

  15. Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184

    Article  CAS  PubMed  Google Scholar 

  16. Rudnik E (2012) 10 compostable polymer materials: definitions, Structures, and Methods of Preparation. In: Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, vol 189. Elsevier, Amsterdam

    Google Scholar 

  17. Wake MC, Gupta PK, Mikos AG (1996) Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant 5(4):465–473

    Article  CAS  PubMed  Google Scholar 

  18. Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42(3):396–402

    Article  CAS  PubMed  Google Scholar 

  19. Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17(5):331–347

    Article  CAS  PubMed  Google Scholar 

  20. Barbetta A, Carrino A, Costantini M, Dentini M (2010) Polysaccharide based scaffolds obtained by freezing the external phase of gas-in-liquid foams. Soft Matter 6(20):5213–5224

    Article  CAS  Google Scholar 

  21. Barbetta A, Barigelli E, Dentini M (2009) Porous alginate hydrogels: synthetic methods for tailoring the porous texture. Biomacromolecules 10(8):2328–2337

    Article  CAS  PubMed  Google Scholar 

  22. Luciani A, Coccoli V, Orsi S, Ambrosio L, Netti PA (2008) PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials 29(36):4800–4807

    Article  CAS  PubMed  Google Scholar 

  23. Huang W, Li X, Shi X, Lai C (2014) Microsphere based scaffolds for bone regenerative applications. Biomater Sci 2(9):1145–1153

    Article  CAS  PubMed  Google Scholar 

  24. Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9(Supplement 1):5–15

    Article  Google Scholar 

  25. Clark A, Milbrandt TA, Hilt JZ, Puleo DA (2014) Tailoring properties of microsphere-based poly (lactic-co-glycolic acid) scaffolds. J Biomed Mater Res A 102(2):348–357

    Article  PubMed  Google Scholar 

  26. Rumian Ł, Reczyńska K, Wrona M, Tiainen H, Haugen HJ, Pamuła E (2015) The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects. Acta Bioeng Biomech 17(1)

    Google Scholar 

  27. Ebewele RO (2000) Polymer science and technology. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  28. Huang GP, Shanmugasundaram S, Masih P, Pandya D, Amara S, Collins G, Arinzeh TL (2015) An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J Biomed Mater Res A 103(2):762–771

    Article  PubMed  Google Scholar 

  29. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171

    Article  CAS  PubMed  Google Scholar 

  30. DeFrates KG, Moore R, Borgesi J, Lin G, Mulderig T, Beachley V, Hu X (2018) Protein-based fiber materials in medicine: a review. Nano 8(7):457

    Google Scholar 

  31. Mandal D, Shirazi AN, Parang K (2014) Self-assembly of peptides to nanostructures. Org Biomol Chem 12(22):3544–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarkar B, O’Leary LE, Hartgerink JD (2014) Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J Am Chem Soc 136(41):14417–14424

    Article  CAS  PubMed  Google Scholar 

  33. O'Donnell PB, McGinity JW (1997) Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 28(1):25–42

    Article  CAS  PubMed  Google Scholar 

  34. Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 27(7):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anand G, Sharma S, Dutta AK, Kumar SK, Belfort G (2010) Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir 26(13):10803–10811

    Article  CAS  PubMed  Google Scholar 

  36. Aravamudhan A, Ramos D, Jenkins N, Dyment N, Sanders M, Rowe D, Kumbar S (2016) Collagen nanofibril self-assembly on a natural polymeric material for the osteoinduction of stem cells in vitro and biocompatibility in vivo. RSC Adv 6(84):80851–80866

    Article  CAS  Google Scholar 

  37. Aravamudhan A, Ramos DM, Nip J, Kalajzic I, Kumbar SG (2018) Micro-nanostructures of cellulose-collagen for critical sized bone defect healing. Macromol Biosci 18(2):1700263

    Article  Google Scholar 

  38. Rainey JK, Wen CK, Goh MC (2002) Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. Matrix Biol 21(8):647–660

    Article  CAS  PubMed  Google Scholar 

  39. Tatulian SA (2013) Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy, lipid-protein interactions. Springer, New York, pp 177–218

    Google Scholar 

  40. Yamashita Y, Endo T (2004) Deterioration behavior of cellulose acetate films in acidic or basic aqueous solutions. J Appl Polym Sci 91(5):3354–3361

    Article  CAS  Google Scholar 

  41. Reese ET (1957) Biological degradation of cellulose derivatives. Ind Eng Chem 49(1):89–93

    Article  CAS  Google Scholar 

  42. Caddeo S, Boffito M, Sartori S (2017) Tissue engineering approaches in the design of healthy and pathological in vitro tissue models. Front Bioeng Biotechnol 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  43. Limongi T, Tirinato L, Pagliari F, Giugni A, Allione M, Perozziello G, Candeloro P, Di Fabrizio E (2017) Fabrication and applications of micro/nanostructured devices for tissue engineering. Nanomicro Lett 9(1):1

    PubMed  Google Scholar 

  44. Kim J, Kang JW, Park JH, Choi Y, Choi KS, Park KD, Baek DH, Seong SK, Min H-K, Kim HS (2009) Biological characterization of long-term cultured human mesenchymal stem cells. Arch Pharm Res 32(1):117–126

    Article  CAS  PubMed  Google Scholar 

  45. Martin-Piedra MA, Garzon I, Oliveira AC, Alfonso-Rodriguez CA, Sanchez-Quevedo MC, Campos A, Alaminos M (2013) Average cell viability levels of human dental pulp stem cells: an accurate combinatorial index for quality control in tissue engineering. Cytotherapy 15(4):507–518

    Article  CAS  PubMed  Google Scholar 

  46. Tsai H-H, Yang K-C, Wu M-H, Chen J-C, Tseng C-L (2019) The effects of different dynamic culture systems on cell proliferation and osteogenic differentiation in human mesenchymal stem cells. Int J Mol Sci 20(16):4024

    Article  CAS  PubMed Central  Google Scholar 

  47. Quent VM, Loessner D, Friis T, Reichert JC, Hutmacher DW (2010) Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research. J Cell Mol Med 14(4):1003–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rutkovskiy A, Stensløkken K-O, Vaage IJ (2016) Osteoblast differentiation at a glance. Med Sci Monit Basic Res 22:95

    Article  PubMed  PubMed Central  Google Scholar 

  49. Manoukian OS, Matta R, Letendre J, Collins P, Mazzocca AD, Kumbar SG (2017) Electrospun nanofiber scaffolds and their hydrogel composites for the engineering and regeneration of soft tissues. In: Biomedical Nanotechnology. Springer, New York, pp 261–278

    Chapter  Google Scholar 

Download references

Acknowledgments

Funding support for this work was provided by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (Award Number R01EB020640), and the Connecticut Regenerative Medicine Research Fund-15-RMB-UCHC-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangamesh G. Kumbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Katebifar, S. et al. (2022). Natural Polymer–Based Micronanostructured Scaffolds for Bone Tissue Engineering. In: Rasooly, A., Baker, H., Ossandon, M.R. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2394. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1811-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1811-0_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1810-3

  • Online ISBN: 978-1-0716-1811-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics