Skip to main content

The Significance of PCR Primer Design in Genetic Diversity Studies: Exemplified by Recent Research into the Genetic Structure of Marine Species

  • Protocol
  • First Online:
PCR Primer Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2392))

Abstract

Genetic markers are widely applied in the study of genetic diversity for many species. The approach incorporates a Polymerase Chain Reaction (PCR) amplification of targeted sequences in the genome. Crucial for the overall success of a PCR experiment is the careful design of synthetic oligonucleotide primers. Ideally designed primer pairs will ensure the efficiency and specificity of the amplification reaction, resulting in a high yield of the desired amplicon. Important criteria such as primer-sequence, −length, and -melting temperature (Tm) are fundamental for the selection of primers and amplification of targeted nucleotide sequences from a DNA template. There are many computational tools available to assist with critical bioinformatics issues related to primer design. These resources allow the user to define parameters and criteria that need to be taken into account when designing primers. Following the initial in silico selection, a primer pair should be further tested in vivo for their amplification efficiency and robustness.

Using examples taken from genetic diversity studies in a marine crustacean, this chapter provides outlines for the application of PCR technology and discusses details for the design of primers for the development and characterization of microsatellite and SNP-markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seeb LW, Templin WD, Sato S et al (2011) Single-nucleotide polymorphisms across a species’ range: Implications for conservation studies of Pacific salmon. Mol Ecol Resour 11:195–217

    Article  PubMed  Google Scholar 

  2. Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191–201

    Article  CAS  Google Scholar 

  3. Vignal A, Milan D, SanCristobal M et al (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Delghandi M, Afzal H, Al Hinai MSN et al (2016) Novel polymorphic microsatellite markers for Panulirus ornatus and their cross-species primer amplification in Panulirus homarus. Anim Biotechnol 27:310–314

    Article  CAS  PubMed  Google Scholar 

  5. Delghandi M, Goddard S, Jerry DR et al (2016) Novel genomic microsatellite markers for genetic population and diversity studies of tropical scalloped spiny lobster (Panulirus homarus) and their potential application in related Panulirus species. Genet Mol Res 15

    Google Scholar 

  6. Moen T, Delghandi M, Wesmajervi MS et al (2009) A SNP/microsatellite genetic linkage map of the Atlantic cod (Gadus morhua). Anim Genet 40:993–996

    Article  CAS  PubMed  Google Scholar 

  7. Moya L, Lai J, Hoffman A et al (2018) Association analysis of a microsatellite repeat in the TRIB1 gene with prostate cancer risk, aggressiveness and survival. Front Genet 9:428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willems T, Gymrek M, Highnam G et al (2014) The landscape of human STR variation. Genome Res 24:1894–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishiura H, Doi K, Mitsui J et al (2018) Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 50:581–590

    Article  CAS  PubMed  Google Scholar 

  10. Nair RR, Tibbit C, Thompson D et al (2020) Sizing, stabilising, and cloning repeat-expansions for gene targeting constructs. Methods 191:15–22

    Article  PubMed  Google Scholar 

  11. Al-Breiki RD, Kjeldsen SR, Afzal H et al (2018) Genome-wide SNP analyses reveal high gene flow and signatures of local adaptation among the scalloped spiny lobster (Panulirus homarus) along the Omani coastline. BMC Genomics 19(1):690

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kjeldsen SR, Zenger KR, Leigh K et al (2016) Genome-wide SNP loci reveal novel insights into koala (Phascolarctos cinereus) population variability across its range. Conserv Genet 17:337–353

    Article  Google Scholar 

  13. Lal MM, Southgate PC, Jerry DR et al (2017) Swept away: ocean currents and seascape features influence genetic structure across the 18,000 km indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. BMC Genomics 18:66

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aiello MM, Solinas C, Santoni M et al (2020) Excision Repair Cross Complementation Group 1 Single-Nucleotide Polymorphisms and Nivolumab in Advanced Non-Small Cell Lung Cancer. Front Oncol 10:1161

    Article  Google Scholar 

  15. Gallerano D, Ciminati S, Grimaldi A et al (2020) Genetically driven CD39 expression shapes human tumor-infiltrating CD8+ T-cell functions. Int J Cancer 147:2597–2610

    Article  CAS  PubMed  Google Scholar 

  16. Sepulveda-Villegas M, Elizondo-Montemayor LTrevino V (2020) Identification and analysis of 35 genes associated with vitamin D deficiency: a systematic review to identify genetic variants. J Steroid Biochem Mol Biol 196:105516

    Article  CAS  PubMed  Google Scholar 

  17. Raafat Rowida I, Eshra KA, El-Sharaby RM et al (2020) Apa1 (rs7975232) SNP in the vitamin D receptor is linked to hepatocellular carcinoma in hepatitis C virus cirrhosis. Br J Biomed Sci 77:53–57

    Article  CAS  PubMed  Google Scholar 

  18. Wesmajervi MS, Tafese T, Stenvik J et al (2007) Eight new microsatellite markers in Atlantic cod (Gadus morhua L.) derived from an enriched genomic library. Mol Ecol Notes 7:138–140

    Article  CAS  Google Scholar 

  19. Delghandi M, Wesmajervi MS, Mennen S et al (2008) Development of twenty sequence-tagged microsatellites for the Atlantic cod (Gadus morhua L.). Conserv Genet 9:1395–1398

    Article  CAS  Google Scholar 

  20. Dao HT, Todd EV, Jerry DR (2013) Characterization of polymorphic microsatellite loci for the spiny lobster Panulirus spp. and their utility to be applied to other Panulirus lobsters. Conserv Genet Resour 5:43–46

    Article  Google Scholar 

  21. Coates BS, Sumerford DV, Miller NJ et al (2009) Comparative performance of single-nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564

    Article  CAS  PubMed  Google Scholar 

  22. Morse P, Kjeldsen SR, Meekan MG et al (2018) Genome-wide comparisons reveal a clinal species pattern within a holobenthic octopod-the Australian southern blue-ringed octopus, Hapalochlaena maculosa (Cephalopoda: Octopodidae). Ecol Evol 8:2253–2267

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moen T, Hayes B, Nilsen F et al (2008) Identification and characterisation of novel SNP markers in Atlantic cod: evidence for directional selection. BMC Genet 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  24. Delghandi M, Saif Nasser Al Hinai M, Afzal H et al (2017) Parentage analysis of tropical spiny lobster (Panulirus homarus) by microsatellite markers. Aquac Res 48:4718–4724

    Google Scholar 

  25. Dawson MN, Raskoff KA, Jacobs DK (1998) Field preservation of marine invertebrate tissue for DNA analyses. Mol Mar Biol Biotechnol 7:145–152

    CAS  PubMed  Google Scholar 

  26. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  27. Westgaard JI, Tafese T, Wesmajervi MS et al (2007) Identification and characterisation of thirteen new microsatellites for Atlantic cod (Gadus morhua L.) from a repeat-enriched library. Conserv Genet 8:749–751

    Article  Google Scholar 

  28. Delghandi M, Wesmajervi MS, Mennen S et al (2009) New polymorphic di-nucleotide microsatellite markers for Atlantic cod (Gadus morhua L.). Conserv Genet 10:1037–1040

    Article  CAS  Google Scholar 

  29. Meglecz E, Costedoat C, Dubut V et al (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404

    Article  CAS  PubMed  Google Scholar 

  30. Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    Article  CAS  PubMed  Google Scholar 

  31. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20:1004–1006

    Article  CAS  PubMed  Google Scholar 

  32. Wesselmann M, Gonzalez-Wanguemert M, Serrao EA et al (2018) Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Sci Rep 8:4770

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dao HT, Smith-Keune C, Wolanski E et al (2015) Oceanographic currents and local ecological knowledge indicate, and genetics does not refute, a contemporary pattern of larval dispersal for the ornate spiny lobster, Panulirus ornatus in the South-East Asian Archipelago. PLoS One 10:e0124568

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kennington WJ, Cadee SA, Berry O et al (2013) Maintenance of genetic variation and panmixia in the commercially exploited western rock lobster (Panulirus cygnus). Conserv Genet 14:115–124

    Article  Google Scholar 

  35. Jombart T, Devillard SBalloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  36. Neuditschko M, Khatkar MS, Raadsma HW (2012) NETVIEW: a high-definition network-visualization approach to detect fine-scale population structures from genome-wide patterns of variation. PLoS One 7:e48375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinig EJ, Neuditschko M, Khatkar MS et al (2016) NETVIEW P: a network visualization tool to unravel complex population structure using genome-wide SNPs. Mol Ecol Resour 16:216–227

    Article  CAS  PubMed  Google Scholar 

  38. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  40. http://www.sequenom.com

    Google Scholar 

  41. Tang K, Fu DJ, Julien D et al (1999) Chip-based genotyping by mass spectrometry. Proc Natl Acad Sci U S A 96:10016–10020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jaccoud D, Peng K, Feinstein D et al (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kilian A, Wenzl P, Huttner E et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol 888:67–89

    Article  PubMed  Google Scholar 

  44. Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high-throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5(Suppl 7):P54

    Article  PubMed Central  Google Scholar 

  45. Lind C, Kilian ABenzie J (2017) Development of diversity arrays technology markers as a tool for rapid genomic assessment in Nile tilapia, Oreochromis niloticus. Anim Genet 48:362–364

    Article  CAS  PubMed  Google Scholar 

  46. Li WGodzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1659

    Google Scholar 

  47. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Excoffier LLischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  49. Weir BCockerham C (1984) Estimating F statistics for the analysis of population structure. Evolution 38:1358–1370

    Google Scholar 

  50. Belkhir K, Borsa P, Chikhi L et al (1996) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Lab Génome Popul Interact CNRS Umr 5000:1996–2004

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Oman (TRC) (ORG/SQU/EBR/13/027) and by the Deanship of Research at the Sultan Qaboos University (IG/DVC/CEMB/14/01). We acknowledge all researchers, students, and members of the research group for their contributions to these projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madjid Delghandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Delghandi, M., Delghandi, M.P., Goddard, S. (2022). The Significance of PCR Primer Design in Genetic Diversity Studies: Exemplified by Recent Research into the Genetic Structure of Marine Species. In: Basu, C. (eds) PCR Primer Design. Methods in Molecular Biology, vol 2392. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1799-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1799-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1798-4

  • Online ISBN: 978-1-0716-1799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics